Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T22:05:27.293Z Has data issue: false hasContentIssue false

Imidazolinone Resistance in Smooth Pigweed (Amaranthus hybridus) Is Due to an Altered Acetolactate Synthase

Published online by Cambridge University Press:  12 June 2017

Brian S. Manley
Affiliation:
Eastern Shore Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Painter. VA 23420-2827
Bijay K. Singh
Affiliation:
American Cyanamid Company, P.O. Box 400, Princeton, NJ 08543
Dale L. Shaner
Affiliation:
American Cyanamid Company, P.O. Box 400, Princeton, NJ 08543
Henry P. Wilson*
Affiliation:
Eastern Shore Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Painter, VA 23420-2827
*
Corresponding author's E-mail: [email protected].

Abstract

Seeds were collected from an imidazolinone-resistant (R) population of smooth pigweed near Marion, MD, and from an imidazolinone-susceptible (S) population near Painter, VA, and grown in the greenhouse. Acetolactate synthase (ALS) enzyme was extracted from both biotypes and assayed in the presence of CGA 152005, chlorimuron, halosulfuron, imazaquin, imazethapyr, nicosulfuron, primisulfuron, pyrithiobac, rimsulfuron, and thifensulfuron to determine if an altered ALS was the mechanism of resistance in the R biotype and to determine if this biotype was cross-resistant to other ALS inhibitor herbicides. The inhibitor concentration required to cause a 50% reduction in ALS activity (I50) was calculated for each herbicide. ALS from the R biotype was approximately 71-, 109,000-, and 9-fold more resistant to imazaquin, imazethapyr, and rimsulfuron, respectively, than that from the S biotype. ALS from the R biotype was approximately threefold more sensitive to pyrithiobac and thifensulfuron than that from the S biotype. R ALS was also slightly more tolerant to CGA 152005 and nicosulfuron and slightly more sensitive to primisulfuron and chlorimuron. ALS from both biotypes generally responded similarly to halosulfuron. Resistance in the R biotype was due to an altered form of ALS that is insensitive to the imidazolinone herbicides and rimsulfuron.

Type
Research
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address for senior author: Novartis Crop Protection, Inc., 3983 Alton Darby Creek Road, Milliard, OH 43026.

References

Literature Cited

Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248254.Google Scholar
Brown, H. M. and Neighbors, S. M. 1987. Soybean metabolism of chlorimuron ethyl: physiological basis for soybean selectivity. Pestic. Biochem. Physiol. 29:112120.Google Scholar
Christopher, J. T., Powles, S. B., and Holtum, J.A.M. 1992. Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol. 100:19091913.CrossRefGoogle ScholarPubMed
Devine, M. D., Maries, M.A.S., and Hall, L. M. 1991. Inhibition of acetolactate synthase in susceptible and resistant biotypes of Stellaria media . Pestic. Sci. 31:273280.Google Scholar
Gerwick, B. C., Subramanian, M. V., Loney-Gallant, V. I., and Chandler, D. P. 1990. Mechanism of action of the 1,2,4-triazolo [1,5-a] pyrimidines. Pestic. Sci. 29:357364.Google Scholar
Hall, L. M. and Devine, M. D. 1990. Cross-resistance of a chlorsulfuron resistant biotype of Stellaria media to a triazolopyrimidine herbicide. Plant Physiol. 93:962966.Google Scholar
Hawkes, T. R., Howard, J. L., and Pontin, S. E. 1989. Herbicides that inhibit the biosynthesis of branch chain amino acids. In Dodge, A. D., ed. Herbicides and Plant Metabolism. New York: Cambridge University Press. pp. 113136.Google Scholar
Holt, J. S. 1992. History of identification of herbicide-resistant weeds. Weed Technol. 6:615620.Google Scholar
Holt, J. S. and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol. 4:141149.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.Google Scholar
Lovell, S. T., Wax, L. M., Horak, M. J., and Peterson, D. E. 1996. Imidazolinone and sulfonylurea resistance. I. A biotype of common waterhemp (Amaranthus rudis). Weed Sci. 44:789794.Google Scholar
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.Google Scholar
Manley, B. S., Wilson, H. P., and Hines, T. E. 1996. Smooth pigweed (Amaranthus hybridus) and livid amaranth (A. lividus) response to several imidazolinone and sulfonylurea herbicides. Weed Technol. 10:835841.Google Scholar
Manley, B. S., Wilson, H. P., and Hines, T. E. 1998. Characterization of imidazolinone resistant smooth pigweed (Amaranthus hybridus). Weed Technol. 12:575584.Google Scholar
Moseley, C., Hatzios, K. K., and Hagood, E. S. 1993. Uptake, translocation, and metabolism of chlorimuron in soybean (Glycine max) and morningglory (Ipomoea spp.). Weed Technol. 7:343348.Google Scholar
Obrigawitch, T. T., Kenyon, W. H., and Kuratle, H. 1990. Effect of application timing on rhizome johnsongrass (Sorghum halepense) control with DPXV9360. Weed Sci. 38:4549.Google Scholar
Powles, S. B. and Howat, P. D. 1990. Herbicide resistant weeds in Australia. Weed Technol. 4:178185.Google Scholar
Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.CrossRefGoogle Scholar
Ray, T. B. 1984. Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75:827831.Google Scholar
Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93:5561.Google Scholar
Saari, L. L., Cotterman, J. C., Smith, W. F., and Primiani, M. M. 1992. Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pestic. Biochem. Physiol. 42:110118.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: CRC Press. pp. 83139.Google Scholar
[SAS] Statistical Analysis Systems. 1985. SAS User's Guide. Cary, NC: Statistical Analysis Systems Institute. 956 p.Google Scholar
Schloss, J. V. 1990. Acetolactate synthase, mechanism of action and its herbicide binding site. Pestic. Sci. 29:283292.Google Scholar
Schloss, J. V., Ciskanik, L. M., and VanDyk, D. E. 1988. Origin of the herbicide binding site of acetolactate synthase. Nature 331:360362.Google Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.CrossRefGoogle ScholarPubMed
Simpson, D. M., Diehl, K. E., and Stoller, E. W. 1994. 2,4-D safening of nicosulfuron and terbufos interaction in corn (Zea mays). Weed Technol. 8:547552.Google Scholar
Singh, B. K., Stidham, M. A., and Shaner, D. L. 1988. Assay of acetohydroxyacid synthase. Anal. Biochem. 171:173179.CrossRefGoogle ScholarPubMed
Stidham, M. A. and Shaner, D. L. 1990. Imidazolinone inhibition of acetohydroxyacid synthase in vitro and in vivo. Pestic. Sci. 29:335340.Google Scholar
Subramanian, M. V., Hung, H., Dias, J. M., Miner, V. W., Butler, J. H., and Jachetta, J. J. 1990. Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol. 94:239244.Google Scholar
Thill, D. C., Mallory-Smith, C. A., Saari, L. L., Cotterman, J. C., Primiani, M. M., and Saladini, J. L. 1993. Sulfonylurea herbicide resistant weeds: discovery, distribution, biology, mechanism, and management. In Caseley, J. C., Cussans, G. W., and Atkins, R. K., eds. Herbicide Resistance in Weeds and Crops. London: Butterman and Heineman. p. 115.Google Scholar
Thompson, C. R., Thill, D. C., Mallory-Smith, C. A., and Shafii, B. 1994. Characterization of chlorsulfuron resistant and susceptible kochia (Kochia scoparia). Weed Technol. 8:470476.Google Scholar
Walker, L. M., Hatzios, K. K., and Wilson, H. P. 1994. Absorption, translocation, and metabolism of 14C-thifensulfuron in soybean (Glycine max), spurred anoda (Anoda cristata), and velvetleaf (Abutilon theophrasti). J. Plant Growth Reg. 13:2732.Google Scholar
Wilcut, J. W., Wehtje, G. R., Patterson, M. G., Cole, T. A., and Hicks, T. V. 1989. Absorption, translocation, and metabolism of foliar-applied chlorimuron in soybeans (Glycine max), peanuts (Arachis hypogaea) and selected weeds. Weed Sci. 37:175180.CrossRefGoogle Scholar