No CrossRef data available.
Article contents
Horse purslane (Trianthema portulacastrum) control in pigeonpea with PRE and POST herbicides
Published online by Cambridge University Press: 24 April 2020
Abstract
Pigeonpea has great potential as a profitable summer legume rotational crop in cereal farming systems of subtropical Australia. Pigeonpea requires season-long weed control, but options for controlling broadleaf weeds in pigeonpea with POST herbicides are limited. The objective of this study was to evaluate the performance of different herbicides (PRE: pendimethalin; POST: acifluorfen, bentazon, and imazapic) applied singly or in sequence for horse purslane control in pigeonpea and their impact on pigeonpea yield. Field experiments were conducted in 2017 and 2018 at Gatton, Australia. Pendimethalin applied PRE at 1.14 kg ai ha−1 reduced horse purslane biomass by 87% and 92% and produced 32% and 105% higher grain yield compared with the nontreated control in 2017 and 2018, respectively. Imazapic applied POST at 0.10 kg ai ha−1 reduced horse purslane biomass by 79% and 82% and increased grain yield by 60% and 88% compared with the nontreated control in 2017 and 2018, respectively. Acifluorfen applied POST (0.34 and 0.42 kg ai ha−1) caused 16% to 48% injury to pigeonpea at 45 d after treatment. Control of horse purslane ranged from 87% to 92% (biomass reduction) with pendimethalin applied PRE at 1.14 kg ai ha−1 and was comparable with pendimethalin applied PRE at 0.91 kg ai ha−1 in the sequential application, and imazapic at 0.08 kg ai ha−1 or bentazon at 0.96 kg ai ha−1. The study findings suggest if farmers miss the PRE application of pendimethalin or are unable to achieve season-long weed control, POST application of imazapic is an alternate. This research provided herbicide options for control of horse purslane in pigeonpea that could be used in rotations for reducing the selection pressure of weeds.
Keywords
- Type
- Research Article
- Information
- Copyright
- © Weed Science Society of America, 2020
Footnotes
Associate Editor: Amit Jhala, University of Nebraska, Lincoln