Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T04:51:34.891Z Has data issue: false hasContentIssue false

Herbicide-Based Weed Management Programs for Palmer Amaranth (Amaranthus palmeri) in Sweetpotato

Published online by Cambridge University Press:  20 January 2017

Stephen L. Meyers*
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Katherine M. Jennings
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
David W. Monks
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
*
Corresponding author's E-mail: [email protected].

Abstract

Studies were conducted in 2010 and 2011 to determine the effect of herbicide-based Palmer amaranth management systems in ‘Covington' sweetpotato. Treatments consisted of three herbicide application times. Pretransplant applications were flumioxazin at 107 g ai ha−1, fomesafen at 280 g ai ha−1, flumioxazin at 70 g ha−1 plus pyroxasulfone at 89 g ai ha−1, or no herbicide. A second herbicide application was applied within 1 d after transplanting (DAP) and consisted of S-metolachlor at 800 g ai ha−1, clomazone at 630 g ai ha−1, or no herbicide. Two weeks after planting (WAP) plots received S-metolachlor at 800 g ha−1, metribuzin at 140 g ai ha−1, a tank mix of S-metolachlor at 800 g ha−1 plus metribuzin at 140 g ha−1, hand-weeding followed by (fb) S-metolachlor at 800 g ha−1, or no herbicide. Crop tolerance, Palmer amaranth control, and sweetpotato yield in systems containing fomesafen pretransplant were similar to flumioxazin-containing systems. Systems containing flumioxazin plus pyroxasulfone pretransplant resulted in increased crop stunting and decreased sweetpotato yield in 2010, compared with systems containing flumioxazin or fomesafen, but were similar to systems with flumioxazin or fomesafen in 2011. In 2010, systems containing S-metolachlor applied within 1 DAP resulted in increased sweetpotato injury, similar Palmer amaranth control, and reduced no. 1, jumbo, and total sweetpotato yield, compared with systems with clomazone. In 2011, systems containing clomazone were more injurious to sweetpotato than systems receiving S-metolachlor, but Palmer amaranth control and sweetpotato yield were similar. Systems containing metribuzin 2 WAP resulted in increased sweetpotato injury and Palmer amaranth control (in 2010) but similar no. 1 and total sweetpotato yields, compared with systems containing S-metolachlor at 2 WAP. Hand-weeding fb S-metolachlor provided greater Palmer amaranth control and no. 1 sweetpotato yield than did systems of S-metolachlor without a preceding hand-weeding event in 2010.

Se realizaron estudios en 2010 y 2011 para determinar los efectos de sistemas basados en herbicidas para el manejo de Amaranthus palmeri en batata 'Covington'. Los tratamientos consistieron en tres momentos de aplicación de herbicidas. Las aplicaciones pre-trasplante fueron flumioxazin a 107 g ai ha−1, fomesafen a 280 g ai ha−1, flumioxazin a 70 g ha−1 más pyroxasulfone a 89 g ai ha−1, o sin herbicida. Una segunda aplicación fue realizada 1 d después del trasplante (DAP) y consistió de S-metolachlor a 800 g ai ha−1, clomazone a 630 g ai ha−1, o sin herbicida. Dos semanas después de la siembra (WAP), las parcelas recibieron S-metolachlor a 800 g ha−1, metribuzin a 140 g ai ha−1, una mezcla en tanque de S-metolachlor a 800 g ha−1 más metribuzin a 140 g ha−1, deshierba manual seguida por (fb) S-metolachlor a 800 g ha−1, o sin herbicida. La tolerancia del cultivo, el control de A. palmeri, y el rendimiento de la batata en sistemas que tuvieron fomesafen en pre-trasplante fueron similares a los sistemas con flumioxazin. Los sistemas que tuvieron flumioxazin más pyroxasulfone en pre-trasplante retrasaron el crecimiento del cultivo y disminuyeron el rendimiento de la batata en 2010, al compararse con sistemas con solo flumioxazin o fomesafen, pero fueron similares a estos mismos sistemas en 2011. En 2010, los sistemas con S-metolachlor aplicados 1 DAP mostraron un mayor daño en la batata, control similar de A. palmeri, y menor rendimiento de batatas no. 1, jumbo y total, al compararse con sistemas con clomazone. En 2011, los sistemas con clomazone fueron más dañinos para la batata que los sistemas con S-metolachlor, pero el control de A. palmeri y el rendimiento del cultivo fueron similares. Los sistemas con metribuzin 2 WAP resultaron en mayor daño de la batata y mayor control de A. palmeri (en 2010), pero niveles similares de rendimientos totales y no. 1 del cultivo, al compararse con sistemas con S-metolachlor a 2 WAP. La deshierba manual fb S-metolachlor brindó mayores niveles de control de A. palmeri y de rendimiento de batata no. 1 que los sistemas de S-metolachlor sin una deshierba manual previa en 2010.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2004a. Valor® SX herbicide product label. Valent Publication No. 2010-VLR-0010. Walnut Creek, CA Valent U.S.A. Corporation.Google Scholar
Anonymous. 2004b. Dual MAGNUM® herbicide product label. Syngenta Publication No. SCP 816A-L1P 0404. Greensboro, NC Syngenta Crop Protection, Inc., 39 p.Google Scholar
Anonymous. 2006. Dual MAGNUM® herbicide product label. Syngenta Publication No. NC0816020AA0406. Greensboro, NC Syngenta Crop Protection, Inc., 3 p.Google Scholar
Anonymous. 2009. Roundup WeatherMax® Herbicide product label. Monsanto Co. Reg. No. 524–537. St. Louis, MO Monsanto Company. 54 p.Google Scholar
Anonymous. 2011. Fierce™ Herbicide technical information bulletin. http://www.valent.com/agriculture/products/fierce/upload/2011-FIE-2001-Fierce-TIB.pdf. Accessed: July 2, 2012.Google Scholar
Bond, J. A., Oliver, L. R., and Stephenson, D. O. IV. 2006. Response of Palmer amaranth (Amaranthus palmeri) accessions to glyphosate, fomesafen, and pyrithiobac. Weed Technol. 20:885892.CrossRefGoogle Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.Google Scholar
Duff, M. G., Al-Khatib, K., and Peterson, D. E. 2008. Efficacy of preemergence application of S-metolachlor plus fomesafen or metribuzin as an element in the control of common waterhemp (Amaranthus rudis Sauer) in soybeans. Trans. Kans. Acad. Sci. 111:230238.Google Scholar
Falk, J. S., Shoup, D. E., Al-Khatib, K., and Peterson, D. E. 2006. Protox-resistant common waterhemp (Amaranthus rudis) response to herbicides applied at different growth stages. Weed Sci. 54:793799.Google Scholar
Geier, P. W., Stahlman, P. W., and Frihauf, J. C. 2006. KIH-485 and S-metolachlor efficacy comparisons in conventional and no-tillage corn. Weed Technol. 20:622626.CrossRefGoogle Scholar
Glaze, N. C. and Hall, M. R. 1990. Cultivation and herbicides for weed control in sweet potato (Ipomoea batatas). Weed Technol. 4:518523.Google Scholar
Harrison, H. F., Jones, A., and Dukes, P. D. 1985. Differential response of six sweet potato (Ipomoea batatas) cultivars to metribuzin. Weed Sci. 33:730733.Google Scholar
Harrison, H. F., Jones, A., and Dukes, P. D. 1987. Heritability of metribuzin tolerance in sweet potatoes (Ipomoea batatas). Weed Sci. 35:715719.CrossRefGoogle Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth and analysis of four Amaranthus species. Weed Sci. 48:347355.Google Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1987. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35:199204.Google Scholar
Kelly, S. T., Shankle, M. W., and Miller, D. K. 2006. Efficacy and tolerance of flumioxazin on sweetpotato (Ipomoea batatas). Weed Technol. 20:334339.Google Scholar
Kemble, J. M., ed. 2011. 2012 Southeastern U.S. Vegetable Handbook. Lincolnshire, IL Vance Publishing Corp. Pp 9697, 265.Google Scholar
La Bonte, D. R., Harrison, H. F., and Motsenbocker, C. E. 1999. Sweetpotato clone tolerance to weed interference. Hortic. Sci. 34:229232.Google Scholar
Lee, R. M., Hager, A. G., and Tranel, P. J. 2008. Prevalence of a novel resistance mechanism to PPO-inhibiting herbicides in waterhemp (Amaranthus tuberculatus). Weed Sci. 56:371375.CrossRefGoogle Scholar
Legleiter, T. R. and Bradley, K. W. 2008. Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations in Missouri. Weed Sci. 56:582587.Google Scholar
Meyers, S. L. 2009. Interference and Control of Palmer Amaranth in Sweetpotato. . Raleigh, NC North Carolina State University. 88 p.Google Scholar
Meyers, S. L., Jennings, K. M., and Monks, D. W. 2012. Response of sweetpotato cultivars to S-metolachlor rate and application time. Weed Technol. 26:474479.CrossRefGoogle Scholar
Meyers, S. L., Jennings, K. M., Schultheis, J. R., and Monks, D. W. 2010a. Interference of Palmer amaranth (Amaranthus palmeri) in sweetpotato. Weed Sci. 58:119203.Google Scholar
Meyers, S. L., Jennings, K. M., Schultheis, J. R., and Monks, D. W. 2010b. Evaluation of flumioxazin and S-metolachlor rate and timing for Palmer amaranth (Amaranthus palmeri) control in sweetpotato. Weed Technol. 24:495503.CrossRefGoogle Scholar
Monks, D. W. and Oliver, L. R. 1988. Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Sci. 36:770774.Google Scholar
Motsenbocker, C. E. and Monaco, T. J. 1993. Differential tolerance of sweet potato (Ipomoea batatas) clones to metribuzin. Weed Technol. 7:349354.CrossRefGoogle Scholar
Motsenbocker, C. E. and Monaco, T. J. 1995. Sweet potato (Ipomoea batatas) clones differ in response to ethyl-metribuzin. Weed Technol. 9:546552.CrossRefGoogle Scholar
[NCDA & CS] North Carolina Department of Agriculture & Consumer Services. 2009. North Carolina Agricultural Statistics. Raleigh, NC North Carolina Department of Agriculture.Google Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008a. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22:108203.Google Scholar
Norsworthy, J. K., Oliveira, M. J., Jha, P., Malik, M., Buckelew, J. K., Jennings, K. M., and Monks, D. W. 2008b. Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol. 22:296302.CrossRefGoogle Scholar
Parker, N. Y., Monaco, T. J., Leidy, R. B., and Sheets, T. J. 1985. Weed control with fluazifop and residues in cucurbit crops (Cucumis sp.) and sweet potatoes (Ipomoea batatas). Weed Sci. 33:405410.CrossRefGoogle Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53:3036.CrossRefGoogle Scholar
Porter, W. C. 1993. Postemergence grass control in sweet potatoes (Ipomoea batatas). Weed Technol. 7:812815.CrossRefGoogle Scholar
Seem, J. E., Creamer, N. G., and Monks, D. W. 2003. Critical weed-free period for ‘Beauregard' sweetpotato (Ipomoea batatas). Weed Technol. 17:686695.Google Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., Kendig, J. A., and Ellersieck, M. R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 51:329333.Google Scholar
Senseman, S.A., ed. 2007. Herbicide Handbook. 9th ed. Champaign, IL Weed Science Society of America. Pp. 275278.Google Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance. Weed Technol. 22:119123.CrossRefGoogle Scholar
Steele, G. L., Porpiglia, P. J., and Chandler, J. M. 2005. Efficacy of KIH-485 on Texas panicum (Panicum texanum) and selected broadleaf weeds in corn. Weed Technol. 19:866869.CrossRefGoogle Scholar
Swallow, W. H. 1984. Those overworked and oft-misused mean separation procedures—Duncan's, LSD, etc. Plant Dis. 68:919921.Google Scholar
Sweat, J. K., Horak, M. J., Peterson, D. E., Lloyd, R. W., and Boyer, J. E. 1998. Herbicide efficacy on four Amaranthus species in soybean (Glycine max). Weed Technol. 12:315321.CrossRefGoogle Scholar
Thinglum, K. A., Riggins, C. W., Davis, A. S., Bradley, K. W., Al-Khatib, K., and Tranel, P. J. 2011. Wide distribution of the waterhemp (Amaranthus tuberculatus) ΔG210 PPX2 mutation, which confers resistance to PPO-inhibiting herbicides. Weed Sci. 59:2227.Google Scholar
[USDA] U.S. Department of Agriculture. 2005. United States Standards for Grades of Sweet Potatoes. Washington, DC U.S. Department of Agriculture.Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service. 2009. 2007 Census of Agriculture. Washington, DC U.S. Department of Agriculture.Google Scholar
Webster, T. M. 2010. Weed survey-southern states. Proc. South. Weed Sci. Soc. 63:256.Google Scholar
Webster, T. M. and Coble, H. D. 1997. Changes in the weed species composition of the southern United States from 1974–1995. Weed Technol. 11:308317.Google Scholar
Westberg, D. E., Oliver, L. R., and Frans, R. E. 1989. Weed control with clomazone alone and with other herbicides. Weed Technol. 3:678685.Google Scholar
Yencho, G. C., Pecota, K. V., Schultheis, J. R., VanEsbroeck, Z. P., Holmes, G. J., Little, B. E., Thornton, A. C., and Truong, V. D. 2008. ‘Covington' sweetpotato. Hort. Sci. 43:19111914.Google Scholar