Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T17:43:40.220Z Has data issue: false hasContentIssue false

Glyphosate-Resistant Giant Ragweed (Ambrosia trifida) Control in Dicamba-Tolerant Soybean

Published online by Cambridge University Press:  20 January 2017

Joseph P. Vink
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main St. East, Ridgetown, ON, Canada N0P 2C0
Nader Soltani*
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main St. East, Ridgetown, ON, Canada N0P 2C0
Darren E. Robinson
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main St. East, Ridgetown, ON, Canada N0P 2C0
François J. Tardif
Affiliation:
Department of Plant Agriculture, Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
Mark B. Lawton
Affiliation:
Monsanto Canada Inc., Guelph, ON, Canada N1G 0B4
Peter H. Sikkema
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main St. East, Ridgetown, ON, Canada N0P 2C0
*
Corresponding author's E-mail: [email protected]

Abstract

Glyphosate-resistant (GR) giant ragweed has been confirmed in Ontario, Canada. Giant ragweed is an extremely competitive weed and lack of control in soybean will lead to significant yield losses. Seed companies have developed new herbicide-resistant (HR) crop cultivars and hybrids that stack multiple HR traits. The objective of this research was to evaluate the efficacy of glyphosate and glyphosate plus dicamba tank mixes for the control of GR giant ragweed under Ontario environmental conditions in dicamba-tolerant (DT) soybean. Three field trials were established over a 2-yr period (2010 and 2011) on farms near Windsor and Belle River, ON. Treatments included glyphosate (900 g ae ha−1), dicamba (300 g ae ha−1), and dicamba (600 g ha−1) applied preplant (PP), POST, or sequentially in various combinations. Glyphosate applied PP, POST, or sequentially provided 22 to 68%, 40 to 47%, and 59 to 95% control of GR giant ragweed and reduced shoot dry weight 26 to 80%, 16 to 50%, and 72 to 98%, respectively. Glyphosate plus dicamba applied PP followed by glyphosate plus dicamba applied POST consistently provided 100% control of GR giant ragweed. DT soybean yield correlated with GR giant ragweed control. This is the first report in Canada of weed control in DT soybean, specifically for the control of GR giant ragweed. Results indicate that the use of dicamba in DT soybean will provide an effective option for the control of GR giant ragweed in Ontario.

La presencia de Ambrosia trifida resistente a glyphosate (GR) se ha confirmado en Ontario, Canadá. A. trifida es una maleza extremadamente competitiva y la falta de control en soya tendrá como resultado importantes pérdidas en el rendimiento. Las compañías de semillas han desarrollado nuevos cultivares e híbridos resistentes a herbicidas (HR), los cuales incluyen la combinación de múltiples mecanismos de resistencia a herbicidas. El objetivo de ésta investigación fue evaluar la eficacia de glyphosate y mezclas de glyphosate más dicamba para el control de A. trifida GR bajo las condiciones ambientales de Ontario en soya resistente a dicamba. Se establecieron tres ensayos de campo por un período de dos años (2010 y 2011) en fincas cercanas a Windsor y Belle River, Ontario. Los tratamientos incluyeron glyphosate (900 g ea ha−1), dicamba (300 g ea ha−1) y dicamba (600 g ha−1), aplicados ya sea antes de la siembra (PP), POST, o secuencialmente en varias combinaciones. Glyphosate aplicado PP, POST o secuencialmente proporcionó de 22 a 68, de 40 a 47 y de 59 a 95% de control de A. trifida GR y redujo el peso seco de la parte aérea de 26 a 80, de 16 a 50 y de 72 a 98%, respectivamente. Glyphosate más dicamba aplicados PP seguido por glyphosate más dicamba aplicados POST, consistentemente proporcionaron 100% de control de A. trifida GR. El rendimiento de la soya resistente a dicamba estuvo correlacionado con el control de A. trifida GR. Este es el primer reporte en Canadá de control de malezas en soya-resistente a dicamba, específicamente para el control de A. trifida GR. Los resultados indican que el uso de dicamba en soya resistente a este herbicida proporcionará una opción efectiva para el control de A. trifida GR en Ontario.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abul-Fatih, H. A. and Bazzaz, F. A. 1980. The biology of Ambrosia trifida L. IV. Demography of plants and leaves. New Phytol. 84:107111.Google Scholar
Bassett, I. J. and Crompton, C. W. 1982. The biology of Canadian weeds. 55. Ambrosia trifida L. Can. J. Plant Sci. 62:10031010.Google Scholar
Baysinger, J. A. and Sims, B. D. 1991. Giant ragweed (Ambrosia trifida) interference in soybeans (Glycine max). Weed Sci. 39:358362.Google Scholar
Baysinger, J. A. and Sims, B. D. 1992. Giant ragweed (Ambrosia trifida) control in soybean (Glycine max). Weed Technol. 6:1318.Google Scholar
Behrens, M. R., Mutlu, N., Chakraborty, S., Dumitru, R., Jiang, W. Z., LaVallee, B. J., Herman, P. L., Clemente, T. E., and Weeks, D. P. 2007. Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:11851187.Google Scholar
Duke, S. O. and Powles, S. B. 2009. Glyphosate-resistant crops and weeds: now and in the future. Agric. Biol. Forum 12:346357.Google Scholar
Egan, J. F., Maxwell, B. D., Mortensen, D. A., Ryan, M. R., and Smith, R. G. 2011. 2,4-Dichlorophenoxyacetic acid (2,4-D)-resistant crops and the potential for evolution of 2,4-D-resistant weeds. Proc. Natl. Acad. Sci. U. S. A. 108:E37.Google Scholar
Feng, P.C.C., Jacob, C. A., Martino-Catt, S. J., Cerny, R. E., Elmore, G. A., Heck, G. R., Huang, J., Kruger, W. M., Malven, M., Miklos, J. A., and Padgette, S. R. 2010. Glyphosate-resistant crops: Developing the next generation products. Pages 4565. In Nandula, V. K., ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, NJ J. Wiley.Google Scholar
Ferrell, J. A. and Witt, W. W. 2002. Comparison of glyphosate with other herbicides for weed control in corn (Zea mays): efficacy and economics. Weed Technol. 16:701706.Google Scholar
Franey, R. J. and Hart, S. E. 1999. Time of application of cloransulam for giant ragweed (Ambrosia trifida) control in soybean (Glycine max). Weed Technol. 13:825828.Google Scholar
Green, J. M. and Castle, L. A. 2010. Transitioning from single to multiple herbicide-resistant crops. Pages 6791. In Nandula, V. K., ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, NJ J. Wiley.Google Scholar
Harrison, S. K., Regnier, E. E., Schmoll, J. T., and Webb, J. E. 2001. Competition and fecundity of giant ragweed in corn. Weed Sci. 49:224229.Google Scholar
Hartzler, R. G., Harrison, K., and Sprague, C. 2002. Emergence characteristics of giant ragweed biotypes from Ohio, Illinois and Iowa. Proc. North Cent. Weed Sci. Soc. 57:51.Google Scholar
Heap, I. 2011. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: December 2, 2011.Google Scholar
Hunt, R. and Bazzaz, F. A. 1980. The Biology of Ambrosia trifida L. V. Response to fertilizer, with growth analysis at the organismal and sub-organismal levels. New Phytol. 84:113121.Google Scholar
Johnston, G. B. and Webb, F. J. 1985. Control of giant ragweed in corn and soybean. Proc. Northeast. Weed Sci. Soc. 39:54.Google Scholar
Johnson, W., Loux, M., Nordby, D., Sprague, C., Nice, G., Westhoven, A., and Stachler, J. 2007. Biology and Management of Giant Ragweed. http://www.ces.purdue.edu/extmedia/BP/GWC-12.pdf. Accessed: December 2, 2011.Google Scholar
Nandula, V. K. 2010. Herbicide resistance: Definitions and concepts. Pages 3543. In Nandula, V. K., ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, NJ J. Wiley.Google Scholar
Norsworthy, J. K., Jha, P., Steckel, L. E., and Scott, R. C. 2010. Confirmation and control of glyphosate-resistant giant ragweed (Ambrosia trifida) in Tennessee. Weed Technol. 24:6470.Google Scholar
[OMAFRA] Ontario Ministry of Agriculture, Food, and Rural Affairs. 2001. Ontario weeds. Publication 505. Guelph, ON Queen's Printer for Ontario. 215 p.Google Scholar
[OMAFRA] Ontario Ministry of Agriculture, Food, and Rural Affairs. 2011. Guide to weed control. Publication 75. Toronto, ON Queen's Printer for Ontario. 400 p.Google Scholar
Reddy, K. N. and Norsworthy, J. K. 2010. Glyphosate-resistant crop production systems: Impact on weed species shifts. Pages 165184. In Nandula, V. K., ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, NJ J. Wiley.Google Scholar
Robinson, A. P. and Johnson, W. G. 2010. Control of summer annual weeds with 2,4-D plus glyphosate tank mixes. Proc. North Cent. Weed Sci. Soc. 65:22.Google Scholar
Seifert-Higgins, S. 2010. Weed management systems in dicamba-tolerant soybeans (DTS). Proc. North Cent. Weed Sci. Soc. 65:91.Google Scholar
Shaner, D. L., Lindenmeyer, R. B., and Ostlie, M. H. 2012. What have the mechanisms of resistance to glyphosate taught us? Pest Manag. Sci. 68:39.Google Scholar
Sikkema, P. H., Soltani, N., Shropshire, C., Smith, P. J., Lawton, M. B., and Tardif, F. J. 2009. Suspected glyphosate-resistant giant ragweed in Ontario. Proc. North Cent. Weed Sci. Soc. 64:167.Google Scholar
Soltani, N., Shropshire, C., and Sikkema, P. H. 2011. Giant ragweed (Ambrosia trifida L.) control in corn. Can. J. Plant. Sci. 91:577581.Google Scholar
Stachler, J. M. 2008. Characterization and management of glyphosate-resistant giant ragweed (Ambrosia trifida L.) and horseweed [Conyza canadensis (L.) Cronq.]. Ph.D. dissertation. Columbus, Ohio The Ohio State University. Pp. 60107.Google Scholar
Steckel, L. 2007. Giant ragweed. https://utextension.tennessee.edu/publications/Documents/W119.pdf. Accessed: December 8, 2011.Google Scholar
Stoller, E. W. and Wax, L. M. 1973. Periodicity of germination and emergence of some annual weeds. Weed Sci. 21:574580.Google Scholar
Taylor, J. B., Loux, M. M., Harrison, S. K., and Regnier, E. 2002. Response of ALS-resistant common ragweed (Ambrosia artemisiifolia) and giant ragweed (Ambrosia trifida) to ALS-inhibiting and alternative herbicides. Weed Technol. 16:815825.Google Scholar
Vink, J. P., Sikkema, P. H., Tardif, F., Robinson, D. E., and Lawton, M. B. 2011. Glyphosate-resistant giant ragweed in Ontario: survey and control. Proc. North Cent. Weed Sci. Soc. 66:87.Google Scholar
Webster, T. M., Loux, M. M., Regnier, E. E., and Harrison, S. K. 1994. Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technol. 8:559564.Google Scholar
Weller, S. C., Owen, M. D. K., and Johnson, W. G. 2010. Managing glyphosate-resistant weeds and population shifts in midwestern U.S. cropping systems. Pages 213232. In Nandula, V. K., ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, NJ J. Wiley.Google Scholar
Woodyard, A. J., Bollero, G. A., and Riechers, D. E. 2009. Broadleaf weed management in corn utilizing synergistic postemergence herbicide combinations. Weed Technol. 23:513518.Google Scholar
Wright, T., Shan, G., Walsh, T., and Peterson, M. 2011. Reply to Egan et al.: Stewardship for herbicide-resistance crop technology. Proceedings of the National Academy of Sciences 108:E38.Google Scholar