Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T00:53:06.707Z Has data issue: false hasContentIssue false

Field and Greenhouse Bioassays to Determine Mesotrione Residues in Soil

Published online by Cambridge University Press:  20 January 2017

Rachel N. Riddle*
Affiliation:
Department of Plant Agriculture, University of Guelph, 1283 Blueline Road, Simcoe, ON Canada N3Y 4N5
John O'Sullivan
Affiliation:
Department of Plant Agriculture, University of Guelph, 1283 Blueline Road, Simcoe, ON Canada N3Y 4N5
Clarence J. Swanton
Affiliation:
Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON Canada N1G 2W1
Rene C. Van Acker
Affiliation:
Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON Canada N1G 2W1
*
Corresponding author's E-mail:[email protected]

Abstract

Whole-plant bioassays using sugar beet, lettuce, cucumber, green bean, pea, and soybean as test crops were used to detect mesotrione residues in the soil. The test crops were planted in soil treated with mesotrione in the field the previous year at rates of 0 to 560 g ai ha−1 and in nontreated soil from the same field, with mesotrione added at concentrations of 0 to 320 μg kg−1. Experiments were conducted in the greenhouse for a 21-d period. Values for the dose giving a 50% response (I50) were predicted using a log-logistic nonlinear regression model. I50 values (mean ± SE) of 8.6 ± 1.8, 14.9 ± 2.0, 29.8 ± 11.0, 41.6 ± 7.3, 52.9 ± 6.4, and 67.9 ± 30.3 g ai ha−1 for sugar beet, lettuce, green bean, cucumber, pea, and soybean, respectively, indicate that these crops were effective bioassay test species for quantifying mesotrione residues. A greenhouse bioassay was a simple and sensitive tool to detect mesotrione at concentrations of less than 1.0 μg kg−1 with sugar beet and lettuce being the most sensitive test species. The I50 values for soil treated with known concentrations of mesotrione were lower than for field soil treated with mesotrione the previous year. Knowing the level of mesotrione residues in the soil, growers have flexibility in crop rotations following mesotrione use on corn. Growers can use this information to minimize risk of crop injury by choosing appropriate rotation crops that suffer little or no yield reduction.

Se usaron bioensayos con plantas enteras de remolacha azucarera, lechuga, pepino, frijol común, guisante, y soya como cultivos indicadores para detectar residuos de mesotrione en el suelo. Los cultivos indicadores fueron sembrados en un suelo que fue tratado en campo el año previo con mesotrione con dosis entre 0 y 560 g ai ha−1 y en suelo sin tratar en el mismo campo al que se le agregó mesotrione en concentraciones de 0 a 320 μg kg−1. Los experimentos fueron realizados en invernadero por un período de 21 d. Se usó un modelo de regresión no-lineal log-logístico para predecir la dosis que causó 50% de respuesta (I50). Los valores de I50 (promedio ± SE) de 8.6 ± 1.8, 14.9 ± 2.0, 29.8 ± 11.0, 41.6 ± 7.3, 52.9 ± 6.4, and 67.9± 30.3, para remolacha, lechuga, frijol, pepino, guisante, y soya, respectivamente, indican que estos cultivos fueron especies indicadoras de bioensayo efectivas para cuantificar los residuos de mesotrione. Un bioensayo de invernadero fue una herramienta simple y sensible para detectar concentraciones de menos de 1.0 μg kg−1 con remolacha y lechuga, siendo estas las especies más sensibles. Los valores de I50 para el suelo tratado con concentraciones conocidas de mesotrione fueron menores a las del suelo tratado en campo con mesotrione el año anterior. El conocer los niveles de residuos de mesotrione en el suelo, brinda a los productores flexibilidad en la rotación de cultivos para definir el cultivo posterior al uso de mesotrione en maíz. Los productores pueden usar esta información para reducir el riesgo de daño en el cultivo al escoger el cultivo de rotación adecuado que sufriría poca o ninguna reducción en el rendimiento.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barnes, C. J. and Lavy, T. L. 1991. Injury and yield response of selected crops to imazaquin and noflurazon residues. Weed Technol. 5:598606.Google Scholar
Dyson, J. S., Beulke, S., Brown, C. D., and Lane, M.C.G. 2002. Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications. J. Environ. Qual. 31:613618.Google Scholar
Eliason, R., Schoenau, J. J., Szmigielski, A. M., and Laverty, W. M. 2004. Phytotoxicity and persistence of flucarbazone-sodium in soil. Weed Sci. 52:857862.Google Scholar
Felix, J., Doohan, D. J., and Bruins, D. 2007. Differential vegetable crop responses to mesotrione soil residues a year after application. Crop Prot. 26:13951403.Google Scholar
Geisel, B.G.L. 2007. The Phytotoxic Effect of ALS Inhibiting Herbicide Combinations in Prairie Soils. M.S. dissertation. Saskatoon, SK, Canada University of Saskatchewan. 67 p.Google Scholar
Geisel, B.G.L., Schoenau, J. J., Holm, F. A., and Johnson, E. N. 2008. Interactions of ALS-inhibiting herbicide residues in three prairie soils. Weed Sci. 56:624627.Google Scholar
Hernandez-Sevillano, V., Mercedes, J. L. Alonso-Prados, and Garcia-Baudin, J. M. 2001. Bioassay to detect MON-37500 and triasulfuron residues in soils. Weed Technol. 15:447452.Google Scholar
Maeghe, L., Eelen, H., and Bulcke, R. 2002. Soil persistence of 4-HPPD-inhibitors in different soil types. Mededelingen—Faculteit Landbouwkundige En Toegepaste Biologische Wetenschappen, Universiteit Gent. 67:383391.Google Scholar
Nielsen, O. K., Ritz, C., and Streibig, J. C. 2004. Nonlinear mixed-model regression to analyze herbicide dose-response relationships. Weed Technol. 18:3037.Google Scholar
Ontario Processing Vegetable Growers. 2001. Ontario Processing Vegetable Growers 2000 Information Handbook. London, ON. 36 p.Google Scholar
O'Sullivan, J. 2005. Grower-friendly bioassay for imazethapyr. Pages 8188 in Van Acker, R. C., ed. Soil Residual Herbicides: Science and Management. Topics in Canadian Weed Science. Volume 3.Saine-Anne-de Bellevue, Quebec: Canadian Weed Science Society.Google Scholar
Presant, E. W. and Acton, C. J. 1984. Soils of the Regional Municipality of Haldimand-Norfolk. Guelph, ON Land Resource Research Institute, Agriculture Canada Rep. No. 57 of the Ontario Institute of Pedology. 111 p.Google Scholar
Prisbylla, M. P., Onisko, B. C., Shribbs, J. M., Adams, D. O., Liu, Y., Ellis, M. K., Hawkes, T. R., and Mutter, L. C. 1993. The novel mechanism of action of the herbicidal triketones. Pages 731738 in Proceedings of the 1993 Brighton Crop Protection Conference—Weeds. Brighton, UK British Crop Protection Council.Google Scholar
Rouchaud, J., Neus, O., Eelen, H., and Bulcke, R. 2000. Dissipation and mobility of the herbicide mesotrione in the soil of corn crops. Mededelingen—Faculteit Landbouwkundige En Toegepaste Biologische Wetenschappen, Universiteit Gent. 65:5158.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Stork, P. and Hannah, M. C. 1996. A bioassay method for formulation testing and residue studies of sulfonylurea and sulfonanylide herbicides. Weed Res. 36:271281.Google Scholar
Streibig, J. C. and Kudsk, P. 1993. Herbicide Bioassays. Boca Raton CRC Press. 270 p.Google Scholar
Sunderland, S. L., Santelmann, P. W., and Baughman, T., A. 1991. A rapid, sensitive soil bioassay for sulfonylurea herbicides. Weed Sci. 39:296298.Google Scholar
Wichert, R. A., Townson, J. K., Bartlett, D. W., and Foxon, G. A. 1999. Technical review of mesotrione, a new maize herbicide. Pages 105110 in 1999 Brighton Crop Protection Conference: Weeds. Proceedings of an International Conference. Brighton, UK British Crop Protection Council.Google Scholar