Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T17:03:38.407Z Has data issue: false hasContentIssue false

Fall and Spring Preplant Herbicide Applications Influence Spring Emergence of Glyphosate-Resistant Horseweed (Conyza canadensis)

Published online by Cambridge University Press:  20 January 2017

Vince M. Davis
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-1155
Greg R. Kruger
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-1155
Bryan G. Young
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
William G. Johnson*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-1155
*
Corresponding author's E-mail: [email protected].

Abstract

Horseweed (Conyza canadensis) is a common weed in no-till crop production systems. It is problematic because of the frequent occurrence of biotypes resistant to glyphosate and acetolactate synthase (ALS)-inhibiting herbicides and its ability to complete its life cycle as a winter or summer annual weed. Tactics to control horseweed while controlling other winter annual weeds routinely fail; herbicide application timing and spring emergence patterns of horseweed may be responsible. The objectives of this experiment were to (1) determine the influence of fall and spring herbicides with and without soil residual horseweed activity on spring-emerging glyphosate-resistant (GR) horseweed density and (2) evaluate the efficacy and persistence of saflufenacil on GR horseweed. Field studies were conducted in southern Indiana and Illinois from fall 2006 to summer 2007 and repeated in 2007 to 2008. Six preplant herbicide treatments were applied at four application timings: early fall, late fall, early spring, and late spring. Horseweed plants were counted every 2 wk following the first spring application until the first week of July. Horseweed almost exclusively emerged in the spring at both locations. Spring horseweed emergence was higher when 2,4-D + glyphosate was fall-applied and controlled other winter annual weeds. With fall-applied 2,4-D + glyphosate, over 90% of the peak horseweed density was observed before April 25. In contrast, only 25% of the peak horseweed density was observed in the untreated check by April 25. Starting from the initiation of horseweed emergence in late March, chlorimuron + tribenuron applied early fall or early spring, and spring-applied saflufenacil at 100 g ai/ha provided greater than 90% horseweed control for 12 wk. Early spring–applied saflufenacil at 50 g ai/ha provided 8 wk of greater than 90% residual control, and early spring–applied simazine provided 6 wk of greater than 90% control. When applied in late spring, saflufenacil was the only herbicide treatment that reduced horseweed densities by greater than 90% compared to 2,4-D + glyphosate. We concluded from this research that fall applications of nonresidual herbicides can increase the rate and density of spring emerging horseweed. In addition, spring-applied saflufenacil provides no-till producers with a new preplant herbicide for foliar and residual control of glyphosate- and ALS-resistant horseweed.

La Conyza canadensis es una maleza común en los sistemas de producción de no labranza (no-till). Es problemática debido a la existencia frecuente de biotipos resistentes a glifosato y acetolactate synthase (ALS) herbicidas inhibidores y sus habilidades para completar su ciclo de vida como maleza anual de invierno o verano. Las tácticas de control de conyza canadensis mientras se controlan otras malezas anuales de invierno fallan rutinariamente, el tiempo de aplicación del herbicida y los patrones de emergencia de la polygonum convolvulus durante la primavera pueden ser los responsables. Los objetivos este experimento fueron: 1) Determinar la influencia de los herbicidas de otoño y primavera con y sin actividad residual de la polygonum convolvulus en la tierra, en las emergencias de las densidades de conyza canadensis resistente al glifosato en la primavera. 2) Evaluar la eficacia y la persistencia de saflufenacil en la conyza canadensis resistente al glifosato. Estudios de campo en el sureste de Indiana e Illinois fueron llevados a cabo del otoño de 2006 al verano de 2007 y repetidos en 2007 y 2008. Seis tratamientos de herbicida de pre-siembra fueron aplicados en cuatro etapas de aplicación: temprano y tarde en el otoño y temprano y tarde en la primavera. Las plantas de conyza canadensis se contaron cada dos semanas después de la primera aplicación de primavera hasta la primera semana de julio. Hubo de emergencia conyza canadensis solamente en primavera en ambas locaciones. La emergencia de conyza canadensis fue mayor cuando 2, 4-D más glifosato fueron aplicados en el otoño y otras malezas de invierno fueron controladas. Con la aplicación de otoño de 2, 4-D más glifosato, más del 90% de la densidad pico de conyza canadensis fue observada antes del 25 de abril. En contraste, solamente el 25% de alcance de la densidad de conyza canadensis fue observado en el terreno no tratado para la misma fecha. Comenzando desde el inicio de la emergencia de conyza canadensis tarde en marzo, aplicaciones de clorimuron y tribenuron temprano en el otoño o temprano en la primavera más aplicación primaveral de saflufenacil en dosis de 100 g ai/ha proporcionaron mas del 90% de control de conyza canadensis por 12 semanas. La aplicación temprana en la primavera de saflufenacil a 50 g ai/ha proporcionaron 8 semanas de mas del 90% de control residual y la aplicación temprana en la primavera de simazine, dieron como resultado 6 semanas de más del 90% de control. Cuando la aplicación fue tarde en la primavera, saflufenacil fue el único tratamiento de herbicida que redujo la densidad de Conyza canadensis por más del 90% comparada con la aplicación de 2,4-D más glifosato. Concluimos de esta investigación que las aplicaciones durante el otoño de herbicidas no residuales pueden aumentar las dosis y la densidad de la emergencia de primavera de Conyza canadensis. Además, la aplicación primaveral de saflufenacil proporciona a los productores de cero labranza, un nuevo herbicida pre siembra para un control foliar y residual de glifosato y Conyza canadensis resistente al ALS.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous 2008. Kixor Herbicide, Worldwide Technical Brochure. Research Triangle Park, NC: BASF Agricultural Products.Google Scholar
Bhowmik, P. C. and Bekech, M. M. 1993. Horseweed (Conyza canadensis) seed production, emergence and distribution in no-till and conventional-tillage corn (Zea mays). Agronomy (Trends Agric. Sci.) 1:6771.Google Scholar
Box, G. E. P., Hunter, W. G., and Hunter, J. S. 1978. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. New York: J. Wiley.Google Scholar
Bruce, J. A. and Kells, J. J. 1990. Horseweed (Conyza canadensis) control in no-tillage soybean (Glycine max) with preplant and preemergence herbicides. Weed Technol 4:642647.Google Scholar
Buhler, D. D. and Owen, M. D. K. 1997. Emergence and survival of horseweed (Conyza canadensis). Weed Sci 45:98101.Google Scholar
Creech, J. E. and Johnson, W. G. 2006. Survey of broadleaf winter weeds in Indiana production fields infested with soybean cyst nematode (Heterodera glycines). Weed Technol 20:10661075.Google Scholar
Creech, J. E., Johnson, W. G., Faghihi, J., Ferris, V. R., and Westphal, A. 2005. First report of soybean cyst nematode reproduction on purple deadnettle under field conditions. Crop Manag. DOI: .Google Scholar
Davis, V. M., Gibson, K. D., Bauman, T. T., Weller, S. C., and Johnson, W. G. 2007. Influence of weed management practices and crop rotation on glyphosate-resistant horseweed population dynamics and crop yield. Weed Sci 55:508516.Google Scholar
Davis, V. M., Gibson, K. D., and Johnson, W. G. 2008a. A field survey to determine distribution and frequency of glyphosate-resistant horseweed (Conyza canadensis) in Indiana. Weed Technol 22:331338.Google Scholar
Davis, V. M. and Johnson, W. G. 2008. Glyphosate-resistant horseweed (Conyza canadensis) emergence, survival, and fecundity in no-till soybean. Weed Sci 56:231236.Google Scholar
Davis, V. M., Kruger, G. R., and Johnson, W. G. 2008b. Growth and seed production of multiple glyphosate- and acetolactate synthesis–resistant horseweed (Conyza canadensis) biotypes. Proc. N. Cent. Weed Sci. Soc 63:65.Google Scholar
Fernald, M. L. 1950. Gray's Manual of Botany. 8th ed. New York: American Book. 1447 p.Google Scholar
Gibson, K. D., Johnson, W. G., and Hillger, D. E. 2005. Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol 19:10651070.Google Scholar
Gleason, H. A. and Croquist, A. 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada. Bronx, NY: New York Botanical Garden. 592 p.Google Scholar
Hanson, B. D., Shrestha, A., and Shaner, D. L. 2009. Distribution of glyphosate-resistant horseweed (Conyza canadensis) and relationship to cropping systems in the Central Valley of California. Weed Sci 57:4853.Google Scholar
Hasty, R. F., Sprague, C. L., and Hager, A. G. 2004. Weed control with fall and early-preplant herbicide applications in no-till soybean. Weed Technol 18:887892.Google Scholar
Heap, I. M. 2008. International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: November 2008.Google Scholar
Kapusta, G. 1979. Seedbed tillage and herbicide influence on soybean (Glycine max) weed control and yield. Weed Sci 27:520526.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840848.Google Scholar
Krausz, R. F., Young, B. G., and Matthews, J. L. 2003. Winter annual weed control with fall-applied corn (Zea mays) herbicides. Weed Technol 17:516520.Google Scholar
Kruger, G. R., Davis, V. M., Johnson, W. G., and Weller, S. C. 2008a. Response of selected Indiana horseweed (Conyza canadensis) populations to glyphosate and cloransulam. Proc. N. Cent. Weed Sci. Soc 63:124.Google Scholar
Kruger, G. R., Davis, V. M., Weller, S. C., and Johnson, W. G. 2008b. Response and survival of rosette-stage horseweed (Conyza canadensis) after exposure to 2,4-D. Weed Sci 56:748752.Google Scholar
Kruger, G. R., Davis, V. M., Westhoven, A. M., Mock, V. A., Weller, S. C., and Johnson, W. G. 2007. Distribution and characterization of ALS resistance in Indiana horseweed (Conyza canadensis) populations. Proc. N. Cent. Weed Sci. Soc 62:39.Google Scholar
Littell, R. C., Henry, P. R., and Ammerman, C. B. 1998. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci 76:12161231.Google Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. 2006. SAS for Mixed Models. 2nd ed. Cary, NC: SAS Institute. 198 p.Google Scholar
Loux, M., Stachler, J., Johnson, B., Nice, G., Davis, V., and Nordby, D. 2006. Biology and Management of Horseweed in The Glyphosate, Weeds, and Crop Series. GWC-9. http://www.ces.purdue.edu/extmedia/GWC/GWC-9-W.pdf. Accessed: November 2008.Google Scholar
Loux, M. M., Dobbels, A. F., Johnson, W. G., Nice, G. R. W., Jordan, T. N., and Bauman, T. T. 2009. Weed Control Guide for Ohio and Indiana. Columbus, OH: The Ohio State University. Bulletin 789, Publ. WS16.Google Scholar
Monnig, N. and Bradley, K. W. 2007. Influence of fall and early spring herbicide applications on winter and summer annual weed populations in no-till soybean. Weed Technol 21:724731.Google Scholar
Moseley, C. M. and Hagood, E. S. Jr. 1990. Horseweed (Conyza canadensis) control in full-season no-till soybeans (Glycine max). Weed Technol 4:814818.Google Scholar
Regehr, D. L. and Bazzaz, F. A. 1979. The population dynamics of Erigeron canadensis, a successional winter annual. J. Ecol 67:923933.Google Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassays analysis using R. J. Stat. Software 12:122.Google Scholar
Sankula, S. 2006. Quantification of the impacts on U.S. agriculture of biotechnology-derived crops planted in 2005. National: Center for Food and Agriculture Policy. www.ncfap.org/whatwedo/pdf/2005biotecimpacts-finalversion.pdf. Accessed: December 18, 2009.Google Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 12431246. in. Proc. 23rd SAS Users Group Intl. Cary, NC: SAS Institute.Google Scholar
Steckel, L. E., Craig, C. C., and Hayes, R. M. 2006. Glyphosate-resistant horseweed (Conyza canadensis) control with glufosinate prior to planting no-till cotton (Gossypium hirsutum). Weed Technol 20:10471051.Google Scholar
Stougaard, R. N., Kapusta, G., and Roskamp, G. 1984. Early preplant herbicide applications for no-till soybean (Glycine max) weed control. Weed Sci 32:293298.Google Scholar
Trainer, G. D., Loux, M. M., Harrison, S. K., and Regnier, E. 2005. Response of horseweed biotypes to foliar applications of cloransulam-methyl and glyphosate. Weed Technol 19:231236.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700712.Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service 2008. Agricultural Chemical Use Database. www.pestmanagement.info/nass. Washington, DC: USDA-NASS. Accessed: November 2008.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed in Delaware. Weed Sci 49:703705.Google Scholar
VanGessel, M. J., Ayeni, A. O., and Majek, B. A. 2001. Glyphosate in full season no-till glyphosate-resistant soybean: role of preplant applications and residual herbicides. Weed Technol 15:714724.Google Scholar
Weaver, S. E. 2001. The biology of Canadian weeds. 115. Conyza canadensis. Can. J. Plant Sci 81:867875.Google Scholar
Young, B. G. 2006. Changes in herbicide use pattern and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301307.Google Scholar
Zheng, D., Tranel, P. J., Davis, V. M., Kruger, G. R., and Johnson, W. G. 2007. Target-site resistance to ALS inhibitors in horseweed. Proc. N. Cent. Weed Sci. Soc 62:34.Google Scholar