Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T02:23:31.807Z Has data issue: false hasContentIssue false

Evaluation of Weed Management Programs and Response of FG72 Soybean to HPPD-Inhibiting Herbicides

Published online by Cambridge University Press:  20 January 2017

John L. Schultz
Affiliation:
Division of Plant Sciences, University of Missouri, Columbia, MO 65211
Michael Weber
Affiliation:
Bayer CropScience, Indianola, IA 50125
Jayla Allen
Affiliation:
Bayer CropScience, Research Triangle Park, NC 27709
Kevin W. Bradley*
Affiliation:
Division of Plant Sciences, University of Missouri, Columbia, MO 65211
*
Corresponding author's E-mail: [email protected].

Abstract

Field experiments were conducted at two locations in Missouri in 2012 and 2013 to evaluate herbicide programs in 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor-resistant soybean, referred to as FG72 soybean, and their tolerance to four HPPD-inhibiting herbicides. At the Columbia location, PRE followed by (fb) POST and two-pass POST treatments provided 97% or greater control of all weeds except ivyleaf morningglory. At Moberly in 2012, PRE fb POST treatments provided 95% or greater control and 100% biomass reduction (BR) of glyphosate-resistant (GR) waterhemp, with the exception of isoxaflutole at 0.04 kg ha−1 plus S-metolachlor at 0.6 kg ha−1 plus metribuzin at 0.2 kg ha−1. In 2013, PRE fb POST treatments provided greater than 89% control and 93% BR. Two-pass POST treatments of isoxaflutole plus glyphosate always provided greater control and BR of GR waterhemp compared with glyphosate fb glyphosate. However, at Columbia, where glyphosate-susceptible weeds were present, there were no differences in control or BR between two-pass POST treatments. In the soybean tolerance experiment, isoxaflutole provided the lowest levels of injury. Applications of tembotrione at the 1× rate resulted in the greatest injury in both years. Topramezone at the 1× rate always provided less injury than tembotrione, but was always similar in BR. The 2× rates increased soybean injury over the 1× rate for the third trifoliate (V3) application, but not for the PRE and first-flower (R1) applications. V3 and R1 applications of isoxaflutole and mesotrione resulted in similar injury, height reduction, and BR to soybean 28 d after application in 2012 and 2013. Overall these results indicate that FG72 soybean could allow the use of HPPD-inhibiting herbicides such as mesotrione PRE along with isoxaflutole PRE and POST to provide an additional herbicide mechanism of action that was not previously available in soybean.

En 2012 y 2013, se realizaron experimentos de campo en dos localidades de Missouri para evaluar programas de herbicidas en soja resistente a inhibidores de 4-hydroxyphenylpyruvate dioxygenase (HPPD), llamada soja FG72, y su tolerancia a cuatro herbicidas inhibidores de HPPD. En la localidad de Columbia, tratamientos PRE seguidos por (fb) POST y tratamientos con dos aplicaciones POST brindaron 97% o más control de todas las malezas excepto Ipomoea hederacea. En Moberly en 2012, tratamientos PRE fb POST brindaron 95% o más control y 100% de reducción de la biomasa (BR) de Amaranthus rudis resistente a glyphosate (GR), con la excepción de isoxaflutole a 0.04 kg ha−1 más S-metolachlor a 0.6 kg ha−1 más metribuzin a 0.2 kg ha−1. En 2013, tratamientos PRE fb POST brindaron un control superior a 89% y 93% BR. Tratamientos con dos aplicaciones POST de isoxaflutole más glyphosate siempre brindaron mayor control y BR de A. rudis GR al compararse con glyphosate fb glyphosate. Sin embargo, en Columbia, donde malezas susceptibles a glyphosate estaban presentes, no hubo diferencias en el control o BR entre tratamientos con dos aplicaciones POST. En el experimento de tolerancia de la soja, isoxaflutole causó el menor nivel de daño. Aplicaciones de tembotrione a una dosis de 1× resultaron en el mayor daño en ambos años. Topramezone a una dosis de 1× siempre causó menor daño que tembotrione, pero BR fue siempre similar. Las dosis de 2× aumentaron el daño en la soja a niveles superiores que la dosis 1× para aplicaciones en la primera hoja trifoliada (V3), pero no para aplicaciones durante el inicio de la floración (R1). Aplicaciones en V3 y R1 de isoxaflutole y mesotrione resultaron en niveles similares de daño, reducción de altura, y BR de la soja 28 d después de la aplicación, en 2012 y 2013. En general, los resultados indican que la soja FG72 podría permitir el uso de herbicidas inhibidores de HPPD, tales como mesotrione PRE en conjunto con isoxaflutole PRE y POST para brindar un mecanismo de acción de herbicidas adicional que no estaba previamente disponible en soja.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Daniel O. Stephenson, Louisiana State University Agricultural Center.

References

Literature Cited

Anonymous (2013) Balance Flexx® herbicide product label. EPA Reg No. 264-1067. Research Triangle Park, NC: Bayer CropScience 7. Pp 910 Google Scholar
Beaudegnies, R, Edmunds, AJF, Fraser, TEM, Hall, RG, Hawkes, TR, Mitchell, G, Schaetzer, J, Wendeborn, S, Wibley, J (2009) Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors—a review of the triketone chemistry story from a Syngenta perspective. Bioorgan Med Chem 17:41344152 Google Scholar
Bhowmik, PC, Kushwaha, S, Mitra, S (1999) Response of various weed species and corn (Zea mays) to RPA 201772. Weed Technol 13:504509 Google Scholar
Bhowmik, PC, Vrabel, TE, Prostak, R, Cartier, J (1996) Activity of RPA 201772 in controlling weed species in field corn. Proc 2nd Int Weed Control Congr (Copenhagen) 2:807812 Google Scholar
Bradley, KW (2013) Herbicide resistance in the Midwest: current status and impacts. Weed Sci Soc Am Abstr 271. Accessed November 15, 2013Google Scholar
Carpenter, J, Gianessi, L (1999) Herbicide-tolerant soybeans: why growers are adopting Roundup Ready varieties. AgBioForum 2:6572 Google Scholar
Craigmyle, BD, Ellis, JM, Bradley, KW (2013) Influence of herbicide programs on weed management in soybean with resistance to glufosinate and 2,4-D. Weed Technol 27:7884 Google Scholar
Fernandez-Cornejo, J, McBride, WD (2002) Adoption of bioengineered crops. USDA-Economic Research Service. Pp 47. http://www.ers.usda.gov/publications/aer-agricultural-economic-report/aer810.aspx#.UkmuPIakrK0. Accessed September 30, 2013Google Scholar
Grichar, WJ, Besler, BA, Palrang, DT (2005) Flufenacet and isoxaflutole combinations for weed control and corn (Zea mays) tolerance. Weed Technol 19:891896 Google Scholar
Hagood, ES, Williams, JL, Bauman, TT (1980) Influence of herbicide injury on the yield potential of soybeans (Glycine max). Weed Technol 28:4045 Google Scholar
Hausman, NE, Singh, S, Tranel, PJ, Riechers, DE, Kaundun, SS, Polge, ND, Thomas, DA, Hager, AG (2011) Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Manag Sci 67:253261 Google Scholar
Heap, I (2014) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/summary/home.aspx. Accessed March 21, 2014Google Scholar
Hinz, J, Allen, J, Arnold, F, DeWeese, B, Hora, J, Doran, D (2013) Selectivity of glyphosate and HPPD inhibiting herbicides in a new soybean event. Weed Sci Soc Am Abstr 191. Accessed March 21, 2014Google Scholar
Jhala, AJ, Sandell, LD, Rana, N, Kruger, GR, Knezevic, SZ (2014) Confirmation and control of triazine and 4-Hydroxyphenylpyruvate dioxygenase-inhibiting herbicide-resistant Palmer amaranth (Amaranthus palmeri) in Nebraska. Weed Technol 28:2838 Google Scholar
Knezevic, SZ, Sikkema, PH, Tardif, F, Hamill, AS, Chandler, K, Swanton, CJ (1998) Biologically effective dose and selectivity of RPA 201772 for preemergence weed control in corn (Zea mays). Weed Technol 12:670676 Google Scholar
Legleiter, TR, Bradley, KW (2008) Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci 56:582587 Google Scholar
Legleiter, TR, Bradley, KW, Massey, RE (2009) Glyphosate-resistant waterhemp (Amaranthus rudis) control and economic returns with herbicide programs in soybean. Weed Technol 23:5461 Google Scholar
Matringe, M, Sailland, A, Pelissier, B, Rolland, A, Zink, O (2005) p-Hydroxyphenylpyruvate dioxygenase inhibitor-resistant plants. Pest Manag Sci 61:269276 Google Scholar
McMullan, PM, Green, JM (2011) Identification of a tall waterhemp (Amaranthus tuberculatus) biotype resistant to HPPD-inhibiting herbicides, atrazine, and thifensulfuron in Iowa. Weed Technol 25:514518 Google Scholar
Mitchell, G, Bartlett, DW, Fraser, TEM, Hawkes, TR, Holt, DC, Townson, JK, Wichert, RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57:120128 Google Scholar
National Climatic Data Center. (2014) http://www.ncdc.gov/. Accessed June 15, 2014.Google Scholar
Powles, SB (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64:360365 Google Scholar
Pratt, DB, Clark, G (2001) Amaranthus rudis and A. tuberculatus—one species or two? J Torrey Bot Soc 128:282296 Google Scholar
Schultz, JL, Chatham, LA, Riggins, CW, Tranel, PJ, Bradley, KW (2015) Distribution of herbicide resistances and molecular mechanisms conferring resistance in Missouri waterhemp (Amaranthus rudis Sauer) populations. Weed Sci 63:336345 Google Scholar
[USDA] U.S. Department of Agriculture (2013) Adoption of genetically engineered crops in the U.S. http://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption.aspx#.UkmmDoakrK0. Accessed September 30, 2013Google Scholar
[USDA-APHIS] U.S. Department of Agriculture–Animal and Plant Health Inspection Service (2013) Bayer petition 09-238-01 for determination of nonregulated status of double herbicide-tolerant soybean (Glycine max) event FG72. Washington, DC: U.S. Department of Agriculture Animal and Plant Health Inspection Service. Pp 34 Google Scholar
Viger, PR, Eberlein, CV, Fuerst, EP (1991) Influence of available soil water content, temperature, and CGA-154281 on metolachlor injury to corn. Weed Sci 39:227231 Google Scholar
Weber, ML, Allen, J (2012) University evaluation of isoxaflutole weed management programs in HPPD tolerant soybean system. North Central Weed Sci Soc Abstr 162. Accessed March 21, 2014Google Scholar
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate resistant crops. Weed Technol 20:301303 Google Scholar
Young, BG, Hart, SE, Simmons, FW (1999) Preemergence weed control in conventional-till Corn (Zea mays) with RPA 201772. Weed Technol 13:471477 Google Scholar