Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-03T19:14:40.689Z Has data issue: false hasContentIssue false

Evaluation of Oriental Mustard (Brassica juncea) Seed Meal for Weed Suppression in Turf

Published online by Cambridge University Press:  20 January 2017

Daniel T. Earlywine
Affiliation:
Division of Plant Sciences, University of Missouri, 108 Waters Hall, Columbia, MO 65211
Reid J. Smeda*
Affiliation:
Division of Plant Sciences, University of Missouri, 108 Waters Hall, Columbia, MO 65211
Travis C. Teuton
Affiliation:
Division of Plant Sciences, University of Missouri, 108 Waters Hall, Columbia, MO 65211
Carl E. Sams
Affiliation:
Department of Plant Sciences, University of Tennessee, Room 252 Ellington Plant Sciences Building, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561
Xi Xiong
Affiliation:
Division of Plant Sciences, University of Missouri, 108 Waters Hall, Columbia, MO 65211
*
Corresponding author's E-mail: [email protected].

Abstract

Oriental mustard seed meal (MSM), a byproduct generated by pressing the seed for oil, exhibits herbicidal properties. In turfgrass, soil fumigants such as methyl bromide are used to control weeds prior to renovation of turf. Environmental concerns have resulted in deregistration of methyl bromide, prompting the need for alternatives. The objective of this research was to determine the effect of MSM on the establishment of selected turfgrass weeds as well as inhibitory effects on establishment of desirable turfgrasses. Greenhouse experiments were conducted in 2006 and 2007 at the University of Missouri. MSM was amended in soil at 0, 1,350 (low), 2,350 (medium), and 3,360 kg ha−1 (high) concentrations. Weed species included annual bluegrass, large crabgrass, buckhorn plantain, white clover, and common chickweed. Turfgrass species included: Rembrandt tall fescue, Evening Shade perennial rye, and Riviera bermudagrass. All species were seeded into soil amended with MSM and either tarped or left untarped. All treatments were compared to dazomet (392 kg ha−1), a synthetic standard. Plant counts and biomass of all species were recorded 4 wk after seeding. Overall, tarped treatments suppressed weed emergence 27 to 50% more compared to untarped treatments, except for large crabgrass. High rates of MSM suppressed emergence of all weeds ≥ 63%. Compared to the untreated control, the density of buckhorn plantain, white clover, and common chickweed was reduced by ≥ 42% at low rates of MSM. Biomass of buckhorn plantain, annual bluegrass, common chickweed, white clover, and large crabgrass was reduced from 37 to 99% at high rates of MSM. MSM at high rates reduced stand counts of tall fescue and perennial ryegrass up to 81% and 77% respectively, compared to the untreated control. Regardless of MSM rates or tarping, suppression of common bermudagrass emergence did not exceed 30%; tarped treatments actually increased bermudagrass emergence by 22%. The biomass for tall fescue, perennial ryegrass, and bermudagrass was reduced by 85, 68, and 10%, respectively, at high rates of MSM. For tall fescue, MSM at all rates strongly suppressed seed germination by 7 d after planting (DAP) (up to 100%), with additional germination observed through 14 DAP, but not thereafter. In both trials, dazomet completely suppressed emergence of all weeds. MSM appears to suppress emergence and growth of a number of weeds common in turf, with potential selectivity for bermudagrass.

La harina de semilla de mostaza (MSM), un subproducto generado al prensar la semilla para extraer aceite, muestra propiedades de herbicida. En el césped, los fumigantes del suelo como el bromuro de metilo son usados para controlar maleza antes de la renovación del césped. Preocupaciones ambientales, derivaron en remover el permiso de uso del bromuro de metilo, urgiendo la necesidad de encontrar otras alternativas. El objetivo de esta investigación fue determinar el efecto de la MSM en el establecimiento cierta maleza que crece en el césped, así como también los efectos inhibidores en pastos deseables usados para césped. Se llevaron al cabo experimentos en invernadero en 2006 y 2007 en la Universidad de Missouri. La MSM fue incorporada al suelo a en cantidades de 0, 1,350 (bajo), 2,350 (medio), y 3,360 (alto) kg ha−1. Las especies de maleza incluyeron Poa annua, Digitaria sanguinalis, Plantago lanceolata, Trifolium repens, y Stellaria media. Las especies de césped incluyeron: Festuca arundinacea cv. Rembrandt, Lolium perenne cv. Evening Shade, y Cynodon dactylon cv. Riviera. Todas las especies fueron sembradas en suelo mejorado con MSM ya sea cubierto con una lona o sin cubrir. Todos los tratamientos fueron comparados con otro en donde se aplicó dazomet (en dosis de 392 kg ha−1), un fumigante estándar sintético. El número de plantas y la biomasa de todas las especies se registraron a las cuatro semanas después de la siembra. En general, los tratamientos cubiertos con lona suprimieron la emergencia de la maleza de un 27 a un 50% por arriba de los tratamientos sin cubierta, excepto en el caso de Digitaria sanguinalis. Altas dosis de MSM suprimieron la emergencia de todas las malezas ≥ 63%. Comparado con el testigo no tratado, la densidad de Plantago lanceolata, Trifolium repens y Stellaria media se redujo ≥ 42% con la dosis mínima de MSM. La biomasa de Plantago lanceolata, Poa annua, Stellaria media, Trifolium repens, y Digitaria sanguinalis se redujo de 37 a 99% con altas dosis de MSM. Comparado con el testigo no tratado, la MSM a altas dosis redujo el número de plantas de Festuca arundinacea y de Lolium perenne hasta un 81% y 77%, respectivamente. Indistintamente de la dosis de MSM o cubiertas de lona, la supresión de la emergencia de Cynodon dactylon no excedió 30%; de hecho, los tratamientos de lona incrementaron la emergencia de Cynodon dactylon en un 22%. Con altas dosis de MSM, la biomasa de Festuca arundinacea, Lolium perenne, y Cynodon dactylon se redujo en 85, 68, y 10%, respectivamente. La MSM en todas las dosis, suprimió de manera severa la germinación de semilla de Festuca arundinacea hasta 100%, 7 días después de la siembra (DAP); se observó alguna germinación adicional 14 DAP, pero no posteriormente. En ambos tratamientos, el dazomet suprimió completamente la emergencia de toda la maleza. La MSM parece suprimir la emergencia y el crecimiento de un número de especies de maleza comunes en el césped, y tener potencial selectividad para Cynodon dactylon.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K., Libbey, C., and Boydston, R. 1997. Weed suppression with Brassica green manure crops in green pea. Weed Sci. 45:439445.Google Scholar
Anonymous 2008. Basamid product label. Certis USA, L.L.C., 9145 Guilford Road, Suite 175. Columbia, MD 21046.Google Scholar
Boydston, R. A. and Hang, A. 1995. Rapeseed (Brassica napus) green manure crop suppresses weeds in potato (Solanum tuberosum). Weed Technol. 9:669675.Google Scholar
Boydston, R. A., McGuire, A., Vaughn, S., and Collins, H. 2007. Effect of mustard seed meal on early weed emergence in peppermint, and potato in sustaining the Pacific Northwest. Food, Farm, and Natural Resource Systems Newsletter. CSNAR, Washington State University Extension 5 (2):46.Google Scholar
Brown, J., Hamilton, M., and Brown, D. A. 2004. Using Brassicaceae seed meal as an alternative to highly toxic soil fumigants in strawberry production. Pages 1415. In Lazzeri, L., Matthiessen, J., Morra, M. J., Palmieri, S., and Rollin, P. eds. Proceedings of the First International Symposium “Biofumigation: A Possible Alternative to Methyl Bromide?” March 31–April 1. Firenze, Italy: Research Institute for Industrial Crops of the Italian Ministry of Agricultural and Forestry Policies.Google Scholar
Brown, J., Hamilton, M., Davis, J., Brown, D., and Seip, L. 2006. Herbicidal and crop phytotoxicity of Brassicaceae seed meals on strawberry transplants and establishment crops. Proceedings of the Second International Biofumigation Symposium, Moscow, ID, June 25–29. http://www.pi.csiro.au/biofumigation2008/links/2ndBiofumigationSym_Idaho2006_Abstracts.pdf. Accessed: February 13, 2009.Google Scholar
Brown, P. D. and Morra, M. J. 1995. Glucosinolate-containing plant tissues as bioherbicides. J. Agric. Food. Chem. 43:30703074.Google Scholar
Brown, P. D. and Morra, M. J. 1997. Control of soil borne plant pests using glucosinolate-containing plants. Adv. Agron. 61:167231.Google Scholar
Edwards, J. H. and Barnes, H. D. 1958. Changing greens from common bermudagrass to tifgreen. U.S. Golf Assoc. J. Turf Manag. 11:2532.Google Scholar
Gallagher, J. E. 1952. Methyl bromide fumigation for turf weed control. Page. 1. in. Southern California Turf Culture. Vol. 2. Los Angeles, CA: University of California.Google Scholar
Gehring, P. J., Nolan, R. J., Watanabe, P. G., and Schumann, A. M. 1991. Solvents, fumigants and related compounds. Pages 668671. In Hayes, W. J. and Laws, E. R. Handbook of Pesticide Toxicology. Volume 2. San Diego, CA: Academic Press.Google Scholar
Haramoto, E. R. and Gallandt, E. R. 2005. Brassica cover cropping: I. Effects on weed and crop establishment. Weed Sci. 53:695701.Google Scholar
Herzstein, J. and Cullen, M. R. 1990. Methyl bromide intoxication in four field-workers during removal of soil fumigation sheets. Am. J. Ind. Med. 17:321326.Google Scholar
Hoagland, L., Carpenter-Boggs, L., Reganold, J. P., and Mazzola, M. 2008. Role of native soil biology in brassicaceous seed meal-induced weed suppression. Soil Biol. Biochem. 40:16891697.Google Scholar
Kirkegaard, J. A., Gardner, P. A., Desmarchelier, J. M., and Angus, J. F. 1993. Biofumigation- using Brassica species to control pests and diseases in horticulture and agriculture. Pages 7782. In Wratten, N. and Mailer, R. J. 9th Australian Research Assembly on Brassicas. Wagga Wagga, New South Wales, Australia: Agriculture Research Institute.Google Scholar
Kirkegaard, J. A. and Sarwar, M. 1998. Biofumigation potential of brassicas. I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant Soil 201:7189.Google Scholar
Krishnan, G., Holshouser, D. L., and Nissen, S. J. 1998. Weed control in soybean (Glycine max) with green manure crops. Weed Technol. 12:97102.CrossRefGoogle Scholar
Matthiessen, J. N. and Kirkegaard, J. A. 2006. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit. Rev. Plant Sci. 25:235265.Google Scholar
Mazzola, M. J., Granatstein, D. M., Elfving, D. C., and Mullinix, K. 2001. Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content. Phytopath. 91:673679.Google Scholar
Mazzola, M., Brown, J., Izzo, A. D., and Cohen, M. F. 2006. Mechanism of action and efficacy of seed meal-induced pathogen suppression differ in a Brassicaceae species and time-dependent manner. Phytopath. 97:454460.Google Scholar
McCarty, L. B. and Miller, G. 2002. Managing Bermudagrass Turf: Selection, Construction, Cultural Practices, and Pest Management Strategies. Chelsea, MI: Ann Arbor Press.Google Scholar
McGuire, A. M. 2003. Mustard green manures replace fumigant and improve infiltration in potato cropping system. Online. Crop Manag. DOI: .Google Scholar
Mojtahedi, H., Santo, G. S., and Wilson, J. H. 1993. Managing Meloidogyne chitwoodii on potato with rapeseed as green manure. Plant Dis. 77:4246.Google Scholar
Neal, N. J. 1999. Weed Management in Conifer Seedbeds and Transplant Beds. North Carolina State University Horticulture Information Leaflets. HIL-449.Google Scholar
Noling, J. W. 1997. Soil Fumigation with Methyl Bromide: Environmental Quality and Worker Safety. Lake Alfred, FL: Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, University of Florida. ENY-040.Google Scholar
Papiernik, S. K., Yates, S. R., and Gan, J. 2001. An approach for estimating the permeability of agricultural films. Environ. Sci. Technol. 35:12401246.Google Scholar
Park, B. S. and Landschoot, P. J. 2003. Effect of dazomet on annual bluegrass emergence and creeping bentgrass establishment in turf maintained as a golf course fairway. Crop Sci. 43:13871394.Google Scholar
Pessarakli, M. 2007. Handbook of Turfgrass Management and Physiology. Boca Raton, FL: CRC Press.Google Scholar
Pimentel, D. 2007. Encyclopedia of Pest Management. Volume 2. Boca Raton, FL: CRC Press.Google Scholar
Rahman, L. and Somers, T. 2005. Suppression of root knot nematode (Meloidogyne javanica) after incorporation of Indian mustard cv. Nemfix as green manure and seed meal in vineyards. Australasian Plant Path. 34:7783.Google Scholar
Rice, A. R., Johnson-Maynard, J. L., Thill, D. C., and Morra, M. J. 2007. Vegetable crop emergence and weed control following amendment with different Brassicaceae seed meals. Renewable Agric. Food Syst. 22:204212.Google Scholar
Sandlin, T. N., Munshaw, G., Philley, H. W., Baldwin, B. S., and Stewart, B. R. 2006. Temperature affects Germination of seeded bermudagrasses. Proceedings of the ASA, CSSA, and SSSA International Meetings. Indianapolis, IN, 68-21.Google Scholar
SAS 2003. Version 9.1. Cary, NC: SAS Institute.Google Scholar
Sieglinde, S. S., Date, K. U., Kirk, W., O'Neil, K., Kremen, A., and Bird, G. 2007. Root, shoot tissues of Brassica juncea and Cereal secale promote potato health. Plant Soil 294:5572.Google Scholar
Suszkiw, J. and Boydston, R. 2004. Mustard for pest control, not for your sandwich. Agric. Res. Mag. 52:1314.Google Scholar
Unruh, B. J., Brecke, B. J., Dusky, J. A., and Goobehere, J. S. 2002. Fumigant alternatives for methyl bromide prior to turfgrass establishment. Weed Technol. 16:379387.Google Scholar
[USEPA] U.S. Environmental Protection Agency 1986. Pesticide Fact Sheet Number 98: Methyl Bromide. Office of Pesticide Programs. Washington, DC: U.S. Government Printing Office.Google Scholar
[USEPA] U.S. Environmental Protection Agency 2008. Implementation of Risk Mitigation Measures for Soil Fumigation Pesticides. http://www.epa.gov/oppsrrd1/reregistration/soil_fumigants/. Accessed: February 10, 2009.Google Scholar
[USEPA] U.S. Environmental Protection Agency 2009. The Phaseout of Methyl Bromide. http://www.epa.gov/ozone/mbr/index.html. Accessed: February 10, 2009.Google Scholar
Vaughn, S. F., Plamquist, D. E., Duval, S. M., and Berhow, M. A. 2006. Herbicidal activity of glucosinolate-containing seedmeals. Weed Sci. 54:743748.Google Scholar
Yates, S. R., Gan, J., Papiernik, S. K., Dungan, R., and Wang, D. 2002. Reducing fumigant emissions after soil application. Phytopath. 92:13441348.Google Scholar