Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T16:29:30.028Z Has data issue: false hasContentIssue false

Evaluation of Herbicide Programs for Use in a 2,4-D–Resistant Soybean Technology for Control of Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri)

Published online by Cambridge University Press:  20 January 2017

M. Ryan Miller*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701
*
Corresponding author's E-mail: [email protected].

Abstract

Two separate field experiments were conducted over a 2-yr period in Fayetteville, AR, during 2012 and 2013 to (1) evaluate POST herbicide programs utilizing a premixture of dimethylamine (DMA) salt of glyphosate + choline salt of 2,4-D in a soybean line resistant to 2,4-D, glyphosate, and glufosinate and (2) determine efficacy of herbicide programs that begin with PRE residual herbicides followed by POST applications of 2,4-D choline + glyphosate DMA on glyphosate-resistant Palmer amaranth. In the first experiment, POST applications alone that incorporated the use of residual herbicides with the glyphosate + 2,4-D premixture provided 93 to 99% control of Palmer amaranth at the end of the season. In the second experiment, the use of flumioxazin, flumioxazin + chlorimuron methyl, S-metolachlor + fomesafen, or sulfentrazone + chloransulam applied PRE provided 94 to 98% early-season Palmer amaranth control. Early-season control helped maintain a high level of Palmer amaranth control throughout the growing season, in turn resulting in fewer reproductive Palmer amaranth plants present at soybean harvest compared to most other treatments. Although no differences in soybean yield were observed among treated plots, it was evident that herbicide programs should begin with PRE residual herbicides followed by POST applications of glyphosate + 2,4-D mixed with residual herbicides to minimize late-season escapes and reduce the likelihood of contributions to the soil seedbank. Dependent upon management decisions, the best stewardship of this technology will likely rely on the use multiple effective mechanisms of action incorporated into a fully integrated weed management system.

Dos experimentos de campo fueron realizados separados durante un período de dos años en Fayetteville, AR, durante 2012 y 2013 para (1) evaluar programas de herbicidas POST utilizando una premezcla de sal dimethylamine (DMA) de glyphosate + sal choline de 2,4-D con una línea de soja resistente a 2,4-D, glyphosate, y glufosinate y (2) determinar la eficacia de programas de herbicidas que inician con herbicidas PRE residuales seguidos por aplicaciones POST de 2,4-D choline + glyphosate DMA para el control de Amaranthus palmeri resistente a glyphosate. En el primer experimento, aplicaciones POST solas que incorporaron el uso de herbicidas residuales con la premezcla de glyphosate + 2,4-D brindaron 93 a 99% de control de A. palmeri al final de la temporada. En el segundo experimento, el uso de flumioxazin, flumioxazin + chlorimuron methyl, S-metolachlor + fomesafen, o sulfentrazone + chloransulam aplicados PRE brindaron 94 a 98% de control de A. palmeri temprano durante la temporada de crecimiento. El control temprano en la temporada ayudó a mantener un alto nivel de control de A. palmeri a lo largo de la temporada de crecimiento, lo que resultó un menos plantas de A. palmeri en estado reproductivo al momento de la cosecha de la soja, al compararse con la mayoría de los otros tratamientos. Aunque no se observaron diferencias en el rendimiento de la soja entre parcelas tratadas, fue evidente que los programas de herbicidas deberían iniciar con herbicidas residuales PRE seguidos de aplicaciones POST de mezclas de glyphosate + 2,4-D con herbicidas residuales para minimizar los escapes tarde en la temporada y así poder reducir la probabilidad de contribuciones al banco de semillas del suelo. Dependiendo de las decisiones de manejo, la mejor forma de preservar esta tecnología será probablemente el depender del uso de múltiples mecanismos de acción efectivos que deben ser incorporados en un sistema de manejo de malezas totalmente integrado.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Jason Bond, Mississippi State University.

References

Literature Cited

Anonymous (2015) Enlist Duo™ product label. 62719-649 Dow AgroSciences. Indianapolis, IN: Dow AgroSciences LLC. 10 pGoogle Scholar
Bagavathiannan, MV, Norsworthy, JK (2013) Occurrence of arable weeds in roadside habitats: implications for herbicide resistance management. Weed Sci 53:163 [Abstract]Google Scholar
Chahal, GS, Johnson, WG (2012) Influence of glyphosate or glufosinate combinations with growth regulator herbicides and other agrochemicals in controlling glyphosate-resistant weeds. Weed Technol 26:638643 Google Scholar
Craigmyle, BD, Ellis, JM, Bradley, KW (2013) Influence of weed height and glufosinate plus 2,4-D combinations on weed control in soybean with resistance to 2,4-D. Weed Technol 27:271280 Google Scholar
Culpepper, AS, Grey, TL, Vencill, WK, Kichler, JM, Webster, TM, Brown, SM, York, AC, Davis, JW, Hanna, WW (2006) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54:620626 Google Scholar
Culpepper, AS, York, AC (1998) Weed management in glyphosate-tolerant cotton. J Cotton Sci 2:174185 Google Scholar
DeVore, JD, Norsworthy, JK, Brye, KR (2013) Influence of deep tillage, a rye cover crop, and various soybean production systems on Palmer amaranth emergence in soybean. Weed Technol 27:263270 Google Scholar
Green, JM, Hazel, CB, Forney, DR, Pugh, LM (2008) New multiple herbicide crop resistance and formulation technology to augment the utility of glyphosate. Pest Manag Sci 64:332339 Google Scholar
Heap, I (2015) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed April 1, 2015Google Scholar
Jha, P, Norsworthy, JK (2009) Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci. 57:644651 Google Scholar
Loux, M (2008) Can the DHT trait solve all of our glyphosate resistance problems? Proc North Cent Weed Sci Soc 62:12 Google Scholar
Neve, P, Norsworthy, JK, Smith, KL, Zelaya, IA (2011) Modelling evolution and management of glyphosate resistance in Amaranthus palmeri . Weed Res 51:99112 Google Scholar
Norsworthy, JK, Griffith, G, Griffin, T, Bagavathiannan, M, Gbur, EE (2014a) In-field movement of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) and its impact on cotton lint yield: evidence supporting a zero-threshold strategy. Weed Technol 62:237249 Google Scholar
Norsworthy, JK, Griffith, GM, Scott, RC, Smith, KL, Oliver, LR (2008) Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol 22:108113 Google Scholar
Norsworthy, JK, Walsh, MJ, Bagavathiannan, MV, Bradley, KW, Steckel, L, Kruger, G, Loux, MM, Eubank, T, Davis, V, Johnson, W, Young, B, Powles, S (2014b) Harvest weed seed control: testing Australian seedbank management tactics in USA soybean. Presentation 250 in Proceedings of the Weed Science Society of America. Vancouver, BC, Canada: Weed Science Society of America Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60 (Special Issue):3162 Google Scholar
Nuti, R, York, A, Bacheler, J, Edmisten, K (2003) Pest control costs and returns in conventional and transgenic cotton management systems. Page 2262 in Proceedings of the Beltwide Cotton Conference. Memphis, TN National Cotton Council of America Google Scholar
Powles, SB, Yu, Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317347 Google Scholar
Reddy, KN, Norsworthy, JK (2010) Glyphosate-resistant crop production systems: impact on weed species shifts. Pages 174177 in Nandula, VK, ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, NJ: J. Wiley Google Scholar
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, DO, Eubank, TW, Scott, RC (2013) Assessment of weed management practices and problematic weeds in the Midsouth United States—soybean: a consultant's perspective. Weed Technol 27:612622 Google Scholar
Scott, RC, Barber, LT, Boyd, JW, Norsworthy, JK, Burgos, N (2014) Recommended Chemicals for Weed and Brush Control. Little Rock, AR: The University of Arkansas Division of Agriculture Cooperative Extension Service, Miscellaneous Publication 44. Pp 3857 Google Scholar
Tharp, BE, Shabenberger, O, Kells, JJ (1999) Response of annual weed species to glufosinate and glyphosate. Weed Technol 13:541545 Google Scholar
[USDA, NASS] United States Department of Agriculture, National Agricultural Statistics Service (2014)http://www.nass.usda.gov. Accessed April 3, 2015Google Scholar
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301307 Google Scholar
Wilcut, JW, Hayes, RL, Nichols, RL (2003) A Beltwide regional economic assessment of weed management systems in non-transgenic and transgenic cotton. Page 2260 in Proceedings of the Beltwide Cotton Conference. Memphis, TN National Cotton Council of America Google Scholar