Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T20:00:18.773Z Has data issue: false hasContentIssue false

European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops

Published online by Cambridge University Press:  20 January 2017

Bo Melander*
Affiliation:
Aarhus University, Department of Agroecology, DK-4200 Slagelse, Denmark
Nicolas Munier-Jolain
Affiliation:
INRA, UMR1347 Agroécologie, BP 86510, F-21000 Dijon, France
Raphaël Charles
Affiliation:
Agroscope Changins-Wädenswil ACW, Switzerland
Judith Wirth
Affiliation:
Agroscope Changins-Wädenswil ACW, Switzerland
Jürgen Schwarz
Affiliation:
Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Strategies and Technology Assessment, Stahnsdorfer Damm 81, 14532 Kleinmachnow, Germany
Rommie van der Weide
Affiliation:
Wageningen University, Department of Applied Plant Research, Edelhertweg 1, 8219PH Lelystad, the Netherlands
Ludovic Bonin
Affiliation:
ARVALIS, Institut du végétal, Station Expérimentale, 91720 Boigneville, France
Peter K. Jensen
Affiliation:
Aarhus University, Department of Agroecology, DK-4200 Slagelse, Denmark
Per Kudsk
Affiliation:
Aarhus University, Department of Agroecology, DK-4200 Slagelse, Denmark
*
Corresponding author's E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of reduced-tillage systems. European agriculture is asked to become less dependent on pesticides and promote crop protection programs based on integrated pest management (IPM) principles. Conventional noninversion tillage systems rely entirely on the availability of glyphosate products, and herbicide consumption is mostly higher compared to plow-based cropping systems. Annual grass weeds and catchweed bedstraw often constitute the principal weed problems in noninversion tillage systems, and crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign cropping systems to allow for more diversification of the crop rotations to combat these weed problems with less herbicide input. Cover crops, stubble management strategies, and tactics that strengthen crop growth relative to weed growth are also seen as important components in future IPM systems, but their impact in noninversion tillage systems needs validation. Direct mechanical weed control methods based on rotating weeding devices such as rotary hoes could become useful in reduced-tillage systems where more crop residues and less workable soils are more prevalent, but further development is needed for effective application. Owing to the frequent use of glyphosate in reduced-tillage systems, perennial weeds are not particularly problematic. However, results from organic cropping systems clearly reveal that desisting from glyphosate use inevitably leads to more problems with perennials, which need to be addressed in future research.

El cultivar sin inversión del suelo usando discos o picos, antes del establecimiento del cultivo, es la forma más común de reducir la labranza en sistemas de cultivos arables que incluyen cereales, colza y maíz en Europa. Sin embargo, nuevas regulaciones sobre el uso de plaguicidas podrían afectar la expansión de los sistemas de labranza reducida. La agricultura europea ha sido llamada a ser menos dependiente de los plaguicidas y a promover programas de protección de cultivos basados en los principios de manejo integrado de plagas (IPM). Los sistemas de labranza convencional sin inversión del suelo dependen totalmente de la disponibilidad de productos con glyphosate, y el consumo de herbicidas es mayoritariamente superior al compararse con sistemas de cultivo basados en el uso de arado. Malezas como zacates anuales y Galium aparine frecuentemente constituyen el principal problema de malezas en sistemas de labranza sin inversión del suelo y rotaciones de cultivos que además tienen proporciones muy altas de cereales de invierno. Existe la necesidad de rediseñar los sistemas de cultivos para permitir una mayor diversificación de las rotaciones de cultivos para así combatir estos problemas de malezas con un uso menor de herbicidas. Cultivos de cobertura, sistemas de manejo con residuos de cultivos, y tácticas que refuercen el crecimiento del cultivo en relación con el crecimiento de las malezas son también vistos como componentes importantes en los sistema IPM futuros, pero su impacto en los sistemas de labranza sin inversión del suelo necesita validación. Los métodos de control mecánico de malezas directo basados en implementos rotativos de deshierba, tales como azadones rotativos, han sido útiles en sistemas de labranza reducida donde la presencia de más residuos de cultivos y suelos menos trabajables son prevalentes, pero un mayor desarrollo de estos métodos es necesario para su aplicación efectiva. Debido al uso frecuente de glyphosate en sistemas de labranza reducida, las malezas perennes no son particularmente problemáticas. Sin embargo, resultados en sistemas de producción orgánicos han revelado claramente que el desistir del uso de glyphosate lleva inevitablemente a más problemas con malezas perennes, lo que necesita ser incluido en investigaciones futuras.

Type
Symposium
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits noncommercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited.
Copyright
Copyright © Weed Science Society of America

References

Literature Cited

Altieri, M. A., Lana, M. A., Bittencourt, H. V., Kieling, A. S., Comin, J. J., and Lovato, P. E. 2011. Enhancing crop productivity via weed suppression in organic no-till cropping systems in Santa Catarina, Brazil. J. Sustain. Agric. 35 :855869.Google Scholar
Andersson, T. N. and Milberg, P. 1996. Weed performance in crop rotations with and withoutt leys and at different nitrogen levels. Ann. Appl. Biol. 128 :505518.Google Scholar
Andersson, T. N. and Milberg, P. 1998. Weed flora and the relative importance of site, crop, crop rotation, and nitrogen. Weed Sci. 46 :3038.Google Scholar
Anonymous. 2012a. Bundesanstalt für Landwirtschaft und Ernährung. http://www.nap-pflanzenschutz.de. Accessed: January 11, 2012.Google Scholar
Anonymous. 2012b. Ministère de L'Agriculture et de la Pechê. http://agriculture.gouv.fr/Ecophyto-in-English-1571. Accessed: March 12, 2012.Google Scholar
Ascard, J., Hatcher, P. E., Melander, B., and Upadhyaya, M. K. 2007. Chapter 10. Thermal weed control. Pages 155175 in Upadhyaya, M. K. and Blackshaw, R. E., eds. Non-Chemical Weed Management: Principles, Concepts and Technology, Wallingford, UK : CAB International (www.cabi.org).Google Scholar
Barberi, P., Silvestri, N., Peruzzi, A., and Raffaelli, M. 2000. Finger harrowing of durum wheat under different tillage systems. Biol. Agric. Hortic. 17 :285303.Google Scholar
Blackshaw, R. E., Andersson, R. L., and Lemerle, D. 2007. Chapter 3. Cultural weed management. Pages 3548 in Upadhyaya, M. K. and Blackshaw, R. E., eds. Non-Chemical Weed Management: Principles, Concepts and Technology, Wallingford, UK : CAB International (www.cabi.org).Google Scholar
Bohan, D. A., Powers, S. J., Champion, G., Haughton, A. J., Hawes, C., Squires, G., Cussans, J., and Mertens, S. K. 2011. Modelling rotations: can crop sequences explain arable weed seedbank abundance? Weed Res. 51 :422432.Google Scholar
Cavan, G., Cussans, J., and Moss, S. R. 2000. Modelling different cultivation and herbicide strategies for their effect on herbicide resistance in Alopecurus myosuroides . Weed Res. 40 :561568.Google Scholar
Chauvel, B., Tschudy, C., and Munier-Jolain, N. M. 2011. Gestion intégrée de la flore adventice dans les systèmes de culture sans labour. Cah. Agric. 20 :194203.Google Scholar
Chikowo, R., Faloya, V., Petit, S., and Munier-Jolain, N. M. 2009. Integrated weed management systems allow reduced reliance on herbicides and long-term weed control. Agric. Ecosyst. Environ. 132 :237242.Google Scholar
Christensen, S. 1994. Crop weed competition and herbicide performance in cereal species and varieties. Weed Res. 34 :2936.Google Scholar
Clarke, J., Moss, S., and Orson, J. 2000. The future for grass weed management in the U.K. Pesticide Outlook, April 2000, 11 :5963.Google Scholar
Cloutier, D. C., van der Weide, R. Y., Peruzzi, A., and Leblanc, M. L. 2007. Chapter 8. Mechanical weed management. Pages 111134 in Upadhyaya, M. K. and Blackshaw, R. E., eds. Non-Chemical Weed Management: Principles, Concepts and Technology, Wallingford, UK : CAB International (www.cabi.org).Google Scholar
Davies, D. B. and Finney, J. B. 2002. Reduced cultivation for cereals: research, development and advisory needs under changing economic circumstances. Home Grown Cereals Authority, Research Review. No.48. 57 p.Google Scholar
Dugon, J., Favre, G., Zimmermann, A., and Charles, R. 2010. Pratiques phytosanitaires dans un réseau d'exploitations de grandes cultures de 1992 à 2004. Rech. Agronomique Suisse 1 :416423.Google Scholar
ENDURE deliverable DR2.16. 2010. Designing Innovative Crop Protection Strategies in Arable Rotations: Winter Crops Based Cropping Systems. http://www.endure-network.eu/endure_publications/deliverables. Accessed: December 15, 2011.Google Scholar
Erbach, D. C. and Lovely, W. G. 1975. Effect of plant residue on herbicide performance in no-tillage corn. Weed Sci. 23 :512515.Google Scholar
EU Directive/128/EC. 2009. Directive/128/EC of The European Parliament and of The Council. Official Journal of The European Union L309 :7186.Google Scholar
Ferguson, A. and Evans, N. 2010. Reducing Pesticide Inputs in Winter Cropping Systems in the UK. Winter Crops Based Cropping Systems (WCCS). Case Study—Guide Number 3. http://www.endure-network.eu/endure_publications/endure_publications2. Accessed: December 15, 2011.Google Scholar
Fortino, G., Guichard, L., Lô-Pelzer, E., Reau, R., Valantin-Morison, M., and Pinochet, X. 2010. Redesigning Cropping Systems in Three French Regions. Winter Crops Based Cropping Systems (WCCS). Case Study—Guide Number 2. http://www.endure-network.eu/endure_publications/endure_publications2. Accessed: December 15, 2011.Google Scholar
Freier, B., Sellmann, J., Scwarz, J., Jahn, M., Moll, E., Gutsche, V., and Zornbach, W. 2010. Netz Vergleichsbetriebe Pflanzenschutz Jahresbericht 2010. Berichte aus dem Julius Kühn-Institut 161, pp. 83. http://pub.jki.bund.de/index.php/BerichteJKI/article/viewFile/1676/2017. Accessed: April 3, 2012.Google Scholar
Froud-Williams, R. J., Drennan, D.S.H., and Chancellor, R. J. 1983. Influence of cultivation regime on weed floras of arable cropping systems. J. Appl. Ecol. 20 :187197.Google Scholar
Griepentrog, H., Nørremark, M., Nielsen, H., and Blackmore, B. 2005. Seed mapping of sugar beet. Precis. Agric. 6 :157165.Google Scholar
Gruber, S. and Claupein, W. 2009. Effect of tillage intensity on weed infestation in organic farming. Soil Tillage Res. 105 :104111.Google Scholar
Hansen, P. K., Kristensen, K., and Willas, J. 2008. A weed suppressive index for spring barley (Hordeum vulgare) varieties. Weed Res. 48 :225236.Google Scholar
Hanzlik, K. and Gerowitt, B. 2011. The importance of climate, site and management on weed vegetation in oilseed rape in Germany. Agric. Ecosyst. Environ. 141 :323331.Google Scholar
Hillocks, R. J. 2012. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 31 :8593.Google Scholar
Holland, J. M. 2004. The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric. Ecosyst. Environ. 103 :125.Google Scholar
Jacobsen, B. H. and Ørum, J. E. 2009. Farm economic and environmental effects of reduced tillage. Food Economics—Acta Agric. Scand. C-E 6 :134142.Google Scholar
Jensen, P. K. 2009. Longevity of seeds of four annual grasses and two dicotyledon weed species as related to placement in the soil and straw disposal technique. Weed Res. 49 :592601.Google Scholar
Jensen, P. K. 2010a. Longevity of seeds of Poa trivialis and Vulpia myuros as affected by simulated soil tillage practices and straw disposal technique. Grass Forage Sci. 65 :7684.Google Scholar
Jensen, P. K. 2010b. Longevity of seeds of Poa pratensis and Lolium perenne as affected by simulated soil tillage practices and its implications for contamination of herbage seed crops. Grass Forage Sci. 65 :8591.Google Scholar
Johnson, E. N., Thomas, A. G., Leeson, J. Y., Shirtliffe, S. J., and Brandt, S. A. 2007. Mechanical weed control in pulse and cereal crops: is there a fit in large-scale western Canadian agriculture?. Pages 4558 in Cloutier, D. C. and Leblanc, M. L., eds. Topics in Canadian Weed Science. Physical Weed Control: Progress and Challenges. Vol.6. Pinawa, Manitoba, Canada : Canadian Weed Science Society.Google Scholar
Jørgensen, L. N. and Kudsk, P. 2006. Twenty years' experience with reduced agrochemical inputs. Pages 16.116.10 in Proceedings of the Home Grown Cereal Authority, Research & Development Conference. Arable Crop Protection in the Balance Profit and the Environment, January 25–26, 2006, Lincolnshire, UK. Kenilworth, UK : HGCA Agriculture and Horticulture Development Board.Google Scholar
Kristensen, H. 1997. Erfaringer med mekanisk ukrudtsbekæmpelse i raps. Pages 179182 in Proceedings of the 14th Danish Plant Protection Conference/Weeds. Nyborg, Denmark : Danish Institute of Agricultural Sciences.Google Scholar
Kurstjens, D.A.G. and Kropff, M. J. 2001. The impact of uprooting and soil-covering on the effectiveness of weed harrowing. Weed Res. 41 :211228.Google Scholar
Kurstjens, D.A.G. and Perdok, U. D. 2000. The selective soil covering mechanism of weed harrows on sandy soil. Soil Tillage Res. 55 :193206.Google Scholar
Kverneland. 2012. Electric Drive GEOseed Offers New Opportunities. http://dk.kverneland.com/Nyheder/Kverneland-Nyheder/Electric-drive-GEOseed-offers-new-opportunities. Accessed: January 25, 2012.Google Scholar
Labreuche, J., Roger-Estrade, J., Feix, I., Viloingt, T., Caboulet, D., Daouze, J. P., Duval, R., Ganteil, A., Quéré, L., Boizard, H., Jouy, L., and Thevenet, G. 2008. Les techniques culturales sans labour concernent un tiers des surfaces françaises. Perspect. Agricoles 342 :3843.Google Scholar
Ledermann, T., Herweg, K., Liniger, H. P., Schneider, F., Hurni, H., and Prasuhn, V. 2010. Applying erosion damage mapping to assess and quantify off-site effects of soil erosion in Switzerland. Land Degrad. Dev. 21 :353366.Google Scholar
Lu, Y. C., Watkins, K. B., Teasdale, J. R., and Abdul-Baki, A. A. 2000. Cover crops in sustainable food production. Food Rev. Int. 16 :121157.Google Scholar
Lukashyk, P., Berg, M., and Köpke, U. 2008. Strategies to control Canada thistle (Cirsium arvense) under organic farming conditions. Renew. Agric. Food Syst. 23 :1318.Google Scholar
Lutman, P.J.W., Bowerman, P., Palmer, G. M., and Whytock, G. P. 1993. The competitive effects of broad-leaved weeds in winter oilseed rape. Pages 10231028 in Proceedings of the 1993 Brighton Crop Protection Conference (Weeds). Brighton, UK : British Crop Protection Council.Google Scholar
Mamarot, J. 2005. Gérer les mauvaises en non-labour. Des références obtenues en Midi-Pyrénées. Phytoma, La Défense des Végétaux 582 :6064.Google Scholar
Meissle, M., Mouron, P., Musa, T., Bigler, F., Pons, X., Vasileiadis, V. P., Otto, S., Antichi, D., Kiss, J., Pálinkás, Z., Dorner, Z., van der Weide, R., Groten, J., Czembor, E., Adamczyk, J., Thibord, J. B., Melander, B., Nielsen, G. C., Poulsen, R. T., Zimmermann, O., Verschwele, A., and Oldenburg, E. 2010. Pests, pesticide use and alternative options in European maize production: current status and future prospects. J. Appl. Entomol. 134 :357375.Google Scholar
Melander, B. 1994. Impact of non-inversion tillage on weeds in temperate regions. Pages 4958 in Tebrügge, F. and Böhrnsen, A. eds. Workshop I of EU Concerted Action 27–28 June: Experiences with the Applicability of No-Tillage Crop Production in the West-European Countries. Giessen, Germany. Langgöns, Germany : Wissenschaftlicher Fachverlag.Google Scholar
Melander, B. 1995. Impact of drilling date on Apera spica-venti L. and Alopecurus myosuroides Huds. in winter cereals. Weed Res. 35 :157166.Google Scholar
Melander, B. 1998. A review of the major experiences with weeds in non-inversion tillage systems within the European Economic Community (EEC. Pages 6368 in Tebrügge, F. and Böhrnsen, A. eds. Final Report of EU Concerted Action: Experiences with the Applicability of No-Tillage Crop Production in the West-European Countries. Giessen, Germany : Fachverlag Köhler,Google Scholar
Melander, B., Holst, N., Jensen, P. K., Hansen, E. M., and Olesen, J. E. 2008. Apera spica-venti population dynamics and impact on crop yield as affected by tillage, crop rotation, location and herbicide programmes. Weed Res. 48 :4857.Google Scholar
Melander, B., Jørgensen, L. N., and Poulsen, R. T. 2010a. IPM in Danish Winter Crops Based Cropping Systems. Winter Crops Based Cropping Systems (WCCS). Case Study—Guide Number 1. http://www.endure-network.eu/endure_publications/endure_publications2. Accessed: December 15, 2011.Google Scholar
Melander, B., Kudsk, P., Mathiassen, S., Jørgensen, L. N. and Hansen, L. M. 2010b. Planteværnsproblemer i forbindelse med reduceret jordbearbejdning. Intern Rapport, Markbrug nr. 29, September 2010. Aarhus Universitet. Denmark : Aarhus University 27 p.Google Scholar
Melander, B. and Rasmussen, K. 2000. Reducing intrarow weed numbers in row crops by means of a biennial cultivation system. Weed Res. 40 :205218.Google Scholar
Melander, B., Rasmussen, I. A., and Barberi, P. 2005. Integrating physical and cultural methods of weed control—examples from European research. Weed Sci. 53 :369381.Google Scholar
Mirsky, S. B., Curran, W. S., Mortensen, D. M., Ryan, M. R., and Shumway, D. L. 2011. Timing of cover-crop management effects on weed suppression in no-till planted soybean using a roller-crimper. Weed Sci. 59 :380389.Google Scholar
Moonen, A. C. and Bàrberi, P. 2004. Size and composition of the weed seedbank after 7 years of different cover crop-maize management systems. Weed Res. 44 :163177.Google Scholar
Morris, N. L., Miller, P.C.H., Orson, J. H., and Froud-Williams, R. J. 2010. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops, and the environment—a review. Soil Tillage Res. 108 :115.Google Scholar
Neve, P., Diggle, A., Smith, F. P., and Powles, S. B. 2003. Simulating evolution of glyphosate resistance in Lolium rigidum II: past, present and future glyphosate use in Australian cropping. Weed Res. 43 :418427.Google Scholar
Olesen, J. E., Hansen, E. M., Askegaard, M., and Rasmussen, I. A. 2007. The value of catch crops and organic manures for spring barley in organic arable farming. Field Crops Res. 100 :168178.Google Scholar
Olsen, J., Kristensen, L., Weiner, J., and Griepentrog, H. W. 2005. Increased density and spatial uniformity increase weed suppression by spring wheat. Weed Res. 45 :316321.Google Scholar
Orson, J. H. 2006. Weed and pest management. Pages 4653 in Tillage Systems for the Benefit of Agriculture and the Environment. “Extended abstracts.” NJF Seminar 378, Odense, Denmark. Nordic Association of Agricultural Scientists. http://www.njf.nu/seminars/378/. Accessed: December 23, 2011.Google Scholar
Pallutt, B. 2010. 30 Jahre Feldversuche zum Pflanzenschutz. J. für Kulturpflanzen 62 : 230237.Google Scholar
Pallutt, B. 2011. Pflügen oder Nichtpflügen—Konsequenzen für den Pflanzenschutz. LandInForm Spezial 2 :4546.Google Scholar
Pedersen, H. J., Kudsk, P., and Helweg, A. 1995 Adsorption and ED50 values of five soil applied herbicides. Pestic. Sci. 44 :131136.Google Scholar
Pedersen, J. and Petersen, P. H. 2011. Radrensning af majs og raps. Farmtest Maskiner og Planteavl 118. Aarhus, Denmark : Videnscentret for Landbrug. 33 p.Google Scholar
Peigné, J., Ball, B. C., Roger-Estrade, J., and David, C. 2007. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 23 :129144.Google Scholar
Pekrun, C. and Claupein, W. 2004. The effect of stubble tillage and primary tillage on population dynamics of Canada thistle (Cirsium arvense) in organic farming. J. Plant Dis. Prot., Special Issue XIX :483490.Google Scholar
Pekrun, C. and Claupein, W. 2006. The implication of stubble tillage for weed population dynamics in organic farming. Weed Res. 46 :414423.Google Scholar
Pekrun, C., Hewitt, J.D.J., and Lutman, P.J.W. 1998. Cultural control of volunteer oilseed rape (Brassica napus). J. Agric. Sci. 130 :155163.Google Scholar
Rasmussen, I. A. 2004. The effect of sowing date, stale seedbed, row width and mechanical weed control on weeds and yields of organic winter wheat. Weed Res. 44 :1220.Google Scholar
Rasmussen, J., Mathiasen, H., and Bibby, B. M. 2010. Timing of post-emergence weed harrowing. Weed Res. 50 :436446.Google Scholar
Rasmussen, K. 2002. Influence of liquid manure application method on weed control in spring cereals. Weed Res. 42 :287298.Google Scholar
Rasmussen, K., Rasmussen, J., and Petersen, J. 1996. Effects of fertiliser placement on weeds in weed harrowed spring barley. Acta Agric. Scand. Sect. B Soil Plant Sci. 3 :192196.Google Scholar
Rasmussen, K. J. 1984. Methods of tillage for spring barley on coarse sandy soils. Dan. J. Plant Soil Sci. 88 :443452.Google Scholar
Rueda-Ayala, V. P., Rasmussen, J., Gerhards, R., and Fournaise, N. E. 2011. The influence of post-emergence weed harrowing on selectivity, crop recovery and crop yield in different growth stages of winter wheat. Weed Res. 51 :478488.Google Scholar
Schwarz, J. and Moll, E. 2010. Entwicklung der Verunkrautung in Abhängigkeit von Fruchtfolge und Herbizidintensität. Journal für Kulturpflanzen 62 : 317325.Google Scholar
Soane, B. D., Ball, B. C., Arvidsson, J., Basch, G., Moreno, F., and Roger-Estrade, J. 2012. No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil Tillage Res. 118 :6687.Google Scholar
Teasdale, J. R. 1996. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 9 :475479.Google Scholar
Terpstra, R. and Kouwenhoven, J. K. 1981. Inter-row and intra-row weed control with a hoe ridger. J. Agric. Eng. Res. 26 :127134.Google Scholar
The Knowledge Centre for Agriculture. 2011. http://www.landbrugsinfo.dk/Oekologi. Accessed: December 18, 2011.Google Scholar
Thorup-Kristensen, K., Magid, J., and Jensen, L. S. 2003. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv. Agron. 79 :227302.Google Scholar
Ulloa, S. M., Datta, A., Bruening, C., Neilson, B., Miller, J., Gogos, G., and Knezevic, S. Z. 2011. Maize response to broadcast flaming at different growth stages: effects on growth, yield and yield components. Eur. J. Agron. 34 :1019.Google Scholar
Ulloa, S. M., Datta, A., and Knezevic, S. Z. 2010. Growth stage impacts tolerance of winter wheat (Triticum aestivum L.) to broadcast flaming. Crop Prot. 29 :11301135.Google Scholar
van der Weide, R. Y., Bleeker, P. O., Achten, V.T.J.M., Lotz, L.A.P., Fogelberg, F., and Melander, B. 2008. Innovation in mechanical weed control in crop rows. Weed Res. 48 :215224.Google Scholar
van der Weide, R. Y., Huiting, H. F., Bleeker, P. O., and Riemens, M. M. 2011. Pro's and con's of reduced tillage in maize with respect to weeds. Pages 1314 in Proceedings of the 9th EWRS Workshop on Physical and Cultural Weed Control, Samsun, Turkey. The European Weed Research Society. http://www.ewrs.org/pwc/proceedings.asp. Accessed: September 18, 2012.Google Scholar
Vasileiadis, V. P., Sattin, M., Otto, S., Veres, A., Pálinkás, Z., Pons, X., Kudsk, P., van der Weide, R., Czembor, E., Moonen, C., and Kiss, J. 2011. Crop protection in European maize-based cropping systems: current practices and recommendations for innovative Integrated Pest Management. Agric. Syst. 104 :533540.Google Scholar
Vullioud, P., Delabays, N., Frei, P., and Mercier, E. 2006. Résultats de 35 ans de culture sans labour à Changins III. Mauvaises herbes, maladies fongiques et ravageurs. Rev. Suisse Agric. 38 :8187.Google Scholar
Vullioud, P. and Mercier, E. 2004. Résultats de 34 ans de culture sans labour à Changins. I. Evolution des rendements. Rev. Suisse Agric. 36 :202212.Google Scholar
Wilson, B. J. and Wright, K. J. 1991. Effects of cultivation and seed shedding on the population dynamics of Galium aparine in winter wheat crops. Pages 813820 in Proceedings of the Brighton Crop Protection Conference, Weeds. Vol. 2. Farnham, UK : British Crop Protection Council.Google Scholar
Zwerger, P., Hurle, K., and Kemmer, A. 1990. Untersuchungen zum Einfluss von Fruchtfolge und Anbauintensität auf die Entwicklung des Unkrautsamengehaltes im Boden. Pages 127133 in Proceedings of the European Weed Research Society Symposium, Helsinki, Finland. Vammala, Finland European Weed Research Society.Google Scholar