Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T20:01:22.621Z Has data issue: false hasContentIssue false

Environment and Soil Conditions Influence Pre- and Postemergence Herbicide Efficacy in Soybean

Published online by Cambridge University Press:  20 January 2017

Christie L. Stewart
Affiliation:
Department of Biological Sciences, University of Western Ontario, London, ON, Canada N6A 3K7
Robert E. Nurse*
Affiliation:
Agriculture and Agri-Food Canada, 2585 County Rd. 20 R.R. #2 Harrow, ON, Canada N0R 1G0
Allan S. Hamill
Affiliation:
Agriculture and Agri-Food Canada, 2585 County Rd. 20 R.R. #2 Harrow, ON, Canada N0R 1G0
Peter H. Sikkema
Affiliation:
University of Guelph Ridgetown Campus, Ridgetown, ON, Canada N0P 2C0
*
Corresponding author's E-mail: [email protected].

Abstract

Deciding on the most efficacious PRE and POST herbicide options and their ideal application timing can be challenging for soybean producers. Climatic events during the 14 d before and after herbicide application can further complicate decisions because of their influence on herbicide effectiveness. Nine field trials were conducted at three locations in southwestern Ontario from 2003 to 2006, to determine the most effective PRE and POST soybean herbicides for control of common lambsquarters, common ragweed, green foxtail, and redroot pigweed. When precipitation was low at least 7 d before and after herbicide application weed control was reduced in treatments that included imazethapyr (PRE or POST) or flumetsulam/S-metolachlor (a premix formulation) (PRE). Cumulative precipitation during the 12 d after PRE application that exceeded the monthly average by at least 60% reduced common lambsquarters control when metribuzin was applied and green foxtail control when imazethapyr was applied. Delaying application of imazethapyr + bentazon to a later soybean growth stage decreased control of common lambsquarters and green foxtail; however, environmental conditions appeared to influence these results. Precipitation on the day of application decreased control of common ragweed and redroot pigweed more with quizalofop-p-ethyl + thifensulfuron-methyl + bentazon compared with imazethapyr + bentazon. Soybean yield varied among POST herbicide treatments because of reduced weed control. This research confirms that environmental conditions pre- and postapplication, as well as application timing, influence herbicide efficacy and should be considered by growers when selecting an herbicide program.

Tomar la decisión más eficaz de entre todas las opciones de herbicidas preemergentes (PRE) y postemergentes (POST) y definir el tiempo ideal de aplicación de éstos, puede ser un gran reto para los productores de soya. Eventos climáticos durante los 14 días anteriores y posteriores a la aplicación del herbicida pueden complicar decisiones debido a su influencia en la efectividad de control. En tres sitios del suroeste de Ontario, de 2003 a 2006 se efectuaron nueve estudios de campo con el objetivo de determinar el herbicida PRE y POST selectivo a soya más efectivo para el control de Chenopodium album, Ambrosia artemisiifolia, Setaria viridis y Amaranthus retroflexus. Cuando hubo poca precipitación al menos 7 días antes y después de la aplicación del herbicida, el control de maleza fue menor en los tratamientos que incluyeron imazethapyr (PRE o POST) o flumetsulam/S-metolaclor (una formula premezclada) (PRE). Cuando la precipitación acumulada durante los 12 días después de la aplicación PRE excedió por al menos el 60% del promedio mensual, se redujo el control de Chenopodium album y de Setaria viridis en áreas tratadas con metribuzin e imazethapyr, respectivamente. Los retrasos en la aplicación de imazethapyr + bentazon en soya de una mayor etapa de crecimiento, disminuyó el control de la Chenopodium album y Setaria viridis; sin embargo, las condiciones ambientales parecieron influenciar estos resultados. La precipitación en el mismo día de la aplicación disminuyó el control de Ambrosia artemisiifolia y Amaranthus retroflexus en mayor grado con quizalofop-p-etil + tifensulfuron-metil + bentazon que con imazethapyr + bentazon. El rendimiento de la soya varió entre tratamientos con herbicidas POST, debido a un disminuido control de la maleza. Esta investigación confirma que las condiciones ambientales previas o posteriores a la aplicación, así como también el tiempo de la aplicación, influyen en la eficacia del herbicida y esto debe ser considerado por los productores cuando seleccionen un programa de tratamiento con herbicidas.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous 2000. Broadstrike* Dual® Magnum® herbicide product label. Calgary, AB: Dow AgroSciences Canada Inc. 8.Google Scholar
Anonymous 2008. Linuron™ 50DF herbicide product label. Wilmington, DE: DuPont. 3.Google Scholar
Askew, S. D., Wilcut, J. W., and Langston, V. B. 1999. Weed management in soybean (Glycine max) with preplant-incorporated herbicides and cloransulam-methyl. Weed Technol 13:276282.Google Scholar
Ayeni, A. O., Majek, B. A., and Hammerstedt, J. 1998. Rainfall influence on imazethapyr bioactivity in New Jersey soils. Weed Sci 46:581586.CrossRefGoogle Scholar
Bailey, W. A., Wilson, H. P., and Hines, T. E. 2001. Influence of cultivation and herbicide programs on weed control and net returns in potato (Solanum tuberosum). Weed Technol 15:654659.CrossRefGoogle Scholar
Barnes, J. W. and Oliver, L. R. 2004. Cloransulam antagonizes annual grass control with aryloxyphenoxypropionate graminicides but not cyclohexanediones. Weed Technol 18:763772.CrossRefGoogle Scholar
Boerboom, C. M., Stolenberg, D. E., Jeschke, M. R., Trower, T. L., and Gaska, J. M. 2006. Factors affecting glyphosate control of common lambsquarters. N. Centr. Weed Sci. Soc. Proc 61:54.Google Scholar
Buhler, D. D. and Proost, R. T. 1992. Influence of application time on bioactivity of imazethapyr in no-tillage soybean (Glycine max). Weed Sci 40:122126.Google Scholar
Buhler, D. D. and Werling, V. L. 1989. Weed control from imazaquin and metolachlor in no-till soybeans (Glycine max). Weed Sci 37:392399.Google Scholar
Cantwell, J. R., Liebl, R. A., and Slife, F. W. 1989. Imazethapyr for weed control in soybean (Glycine max). Weed Technol 3:596601.Google Scholar
Chomas, A. J. and Kells, J. J. 2004. Triazine-resistant common lambsquarters (Chenopodium album) control in corn with preemergence herbicides. Weed Technol 18:551554.CrossRefGoogle Scholar
Doran, D. L. and Andersen, R. N. 1975. Effects of simulated rainfall on bentazon activity. Weed Sci 23:105109.CrossRefGoogle Scholar
Gower, S. A., Loux, M. M., Cardina, J., and Harrison, S. K. 2002. Effect of planting date, residual herbicide, and postemergence application timing on weed control and grain yield in glyphosate-tolerant corn (Zea mays). Weed Technol 16:488494.CrossRefGoogle Scholar
Griffin, J. L. and Habetz, R. J. 1989. Soybean (Glycine max) tolerance to preemergence and postemergence herbicides. Weed Technol 3:459462.Google Scholar
Hager, A. and Renner, K. 1994. Common ragweed (Ambrosia artemisiifolia) control in soybean (Glycine max) with bentazon as influenced by imazethapyr or thifensulfuron tank-mixes. Weed Technol 8:766771.Google Scholar
Hager, A. G., Renner, K. A., Schabenberger, O., and Penner, D. 1999. Soil moisture, relative humidity, and bentazon affect imazethapyr absorption and translocation in common ragweed (Ambrosia artemisiifolia). Weed Technol 13:320323.Google Scholar
Hart, S. E., Wax, L. M., and Hager, A. G. 1997. Comparison of total postemergence weed control programs in soybean. J. Prod. Agric 10:36141.Google Scholar
Hartzler, B. 1996. Is one-pass weed control a realistic goal. Ames, IA: Department of Agronomy, Iowa State University Extension Agronomy. 3. http://www.weeds.iastate.edu/mgmt/1996/onepass.htm. Accessed: December 3, 2008.Google Scholar
Hess, F. D. and Falk, R. H. 1990. Herbicide deposition on leaf surfaces. Weed Sci 38:280288.Google Scholar
Jordan, D. L. 1995. Influence of adjuvants on the antagonism of graminicides by broadleaf herbicides. Weed Technol 9:741747.CrossRefGoogle Scholar
Levene, B. C. and Owen, M. D. K. 1995. Effect of moisture stress and leaf age on bentazon absorption in common cocklebur (Xanthium strumarium) and velvetleaf (Abutilon theophrasti). Weed Sci 43:712.Google Scholar
Li, J., Johnson, W. G., and Smeda, R. J. 2002. Interactions between glyphosate and imazethapyr on four annual weeds. Crop Prot 21:10871092.CrossRefGoogle Scholar
Lich, J. M., Renner, K. A., and Penner, D. 1997. Interaction of glyphosate with postemergence soybean (Glycine max) herbicides. Weed Sci 45:1221.CrossRefGoogle Scholar
Loux, M. M., Dobbels, A. F., Johnson, W. G., Nice, G. R. W., Bauman, T. T., and Stachler, J. M. 2008. Weed control guide for Ohio and Indiana. Columbus, OH: Ohio State University Extension Bulletin 789/Purdue Extension Pub. No. WS16. 201.Google Scholar
Lundkvist, A. 1997. Influence of weather on the efficacy of diclorprop-P/MCPA and tribenuron-methyl. Weed Res 37:361371.Google Scholar
Monks, C. D., Wilcut, J. W., and Richburg, J. S. III. 1993. Broadleaf weed control in soybean (Glycine max) with chlorimuron plus acifluorfen or thifensulfuron mixtures. Weed Technol 7:317321.CrossRefGoogle Scholar
Muehlbauer, F. J., Summerfield, R. J., Kaiser, W. J., Clement, S. L., Boerboom, C. M., Welsh-Maddux, M. M., and Short, R. W. 1998. Principles and practice of lentil production. http://www.ars.usda.gov/is/np/lentils/lentils.htm?pf=1. Accessed: October 21, 2008.Google Scholar
Nalewaja, J. D., Palczynski, J., and Manthey, F. A. 1990. Imazethapyr efficacy with adjuvants and environments. Weed Technol 4:765770.Google Scholar
Nelson, K. A., Renner, K. A., and Penner, D. 1998. Weed control in soybean (Glycine max) with imazamox and imazethapyr. Weed Sci 46:587594.Google Scholar
Novosel, K. M., Renner, K. A., Kells, J. J., and Spandl, E. 1998. Metolachlor efficacy as influenced by three acetolactate synthase-inhibiting herbicides. Weed Technol 12:248253.Google Scholar
Nurse, R. E., Hamill, A. S., Swanton, C. J., Tardif, F. J., Deen, W., and Sikkema, P. H. 2007. Is the application of a residual herbicide required prior to glyphosate application in no-till glyphosate-tolerant soybean (Glycine max)? Crop Prot 26:484489.Google Scholar
Nurse, R. E., Swanton, C. J., Tardif, F. J., and Sikkema, P. H. 2006. Weed control and yield are improved when glyphosate is preceded by a residual herbicide in glyphosate-tolerant maize (Zea mays). Crop Prot 25:11741179.Google Scholar
Oliviera, R. S. Jr., Koskined, W. C., and Ferrieira, F. A. 2001. Sorption and leaching potential of herbicides on Brazilian soils. Weed Res 4:97110.CrossRefGoogle Scholar
[OMAFRA] Ontario Ministry of Agriculture, Food and Rural Affairs 2008. Guide to Weed Control, Publication 75. Toronto, ON. 379.Google Scholar
Peterson, D., Thompson, C. R., Regehr, D. L., and Al-Khatib, K. 2001. Herbicide mode of action. Manhattan, KS: Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Publication C-715.Google Scholar
Riethmuller-Haage, I., Bastiaans, L., Kempenaar, C., Smunty, V., and Kropff, M. J. 2007. Are prespraying growing conditions a major determinant of herbicide efficacy? Weed Res 47:415424.CrossRefGoogle Scholar
Salzman, F. P. and Renner, K. A. 1992. Response of soybean to combinations of clomazone, metribuzin, linuron, alachlor, and atrazine. Weed Technol 6:922929.Google Scholar
Sikkema, P. H., Shropshire, C., Hamill, A. S., Weaver, S. E., and Cavers, P. B. 2004. Response of common lambsquarters (Chenopodium album) to glyphosate application timing and rate in glyphosate-resistant corn. Weed Technol 18:908916.Google Scholar
Soltani, N., Shropshire, C., Cowan, T., and Sikkema, P. 2004. White bean sensitivity to preemergence herbicides. Weed Technol 18:675679.Google Scholar
Soltani, N., Van Eerd, L. L., Vyn, R., Shropshire, C., and Sikkema, P. H. 2007. Weed management in dry beans (Phaseolus vulgaris) with dimethenamid plus reduced doses of imazethapyr applied preplant incorporated. Crop Prot 26:739745.CrossRefGoogle Scholar
Van Wyk, L. J. and Reinhardt, C. F. 2001. A bioassay technique detects imazethapyr leaching and liming-dependent activity. Weed Technol 15:16.Google Scholar
Wilson, J. S. and Worsham, A. D. 1988. Combinations of nonselective herbicides for difficult to control weeds in no-till corn, Zea mays, and soybeans, Glycine max . Weed Sci 36:648652.Google Scholar