Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T20:03:22.165Z Has data issue: false hasContentIssue false

Efficacy of Various Corn Herbicides Applied Preplant Incorporated and Preemergence

Published online by Cambridge University Press:  20 January 2017

William G. Johnson
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Gurinderbir S. Chahal*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
David L. Regehr
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS, 66506
*
Corresponding author's E-mail: [email protected]

Abstract

Field studies were conducted in central Missouri and central Kansas to evaluate the crop tolerance and efficacy of various combinations of atrazine, flufenacet + isoxaflutole, flumetsulam + clopyralid, isoxaflutole, and S-metolachlor applied PPI or PRE in conventional-till corn. Application technique did not influence crop injury in Kansas. In Missouri, greater crop injury was observed with treatments containing isoxaflutole when applied PPI vs. PRE. Application technique influenced giant foxtail, ivyleaf morningglory, large crabgrass, Palmer amaranth, and common waterhemp control. In dry years, control of these weeds was usually either same or greater with PPI than it was with PRE treatments. In years with average to above average precipitation, isoxaflutole provided greater control as a PRE application than as a PPI application. Palmer amaranth and common waterhemp control was usually greater with atrazine, isoxaflutole, and S-metolachlor applied PRE than it was applied PPI. Differences in control of all weeds between PPI and PRE applications were less obvious with two or three herbicides compared with treatments with a single herbicide. In general, the corn yield was greater with most of the treatments having two, three, or four herbicides than it was with treatments having a single herbicide, which was due to better weed control with the tank-mixtreatments.

Se realizaron estudios de campo en el centro de Missouri y en el centro de Kansas para evaluar la tolerancia del cultivo y la eficacia de varias combinaciones de atrazine, flufenacet + isoxaflutole, flumetsulam + clopyralid, isoxaflutole, y S-metolachlor aplicadas pre-siembra incorporada (PPI) o pre- emergencia (PRE) en maíz de labranza convencional. La técnica de aplicación no influyó en el daño al cultivo en Kansas. En Missouri, se observó mayor daño al cultivo con tratamientos que contenían isoxaflutole cuando se aplicaron PPI en comparación a PRE. La técnica de aplicación influyó en el control de Setaria faberi, Ipomoea hederacea, Digitaria sanguinalis, Amaranthus palmeri y Amaranthus rudis. En años de baja precipitación, el control de estas malezas fue usualmente, igual o mayor con tratamientos PPI que con los PRE. En años de precipitación promedio o mayor, isoxaflutole proporcionó mejor control con la aplicación PRE que con la PPI. El control de A. palmeri y A. rudis fue usualmente mayor en aplicaciones PRE que PPI cuando se usó atrazine, isoxaflutole y S-metolachlor. Las diferencias en el control de todas las malezas entre las aplicaciones PPI y PRE fueron menos obvias con mezclas de dos o tres herbicidas en comparación a los tratamientos de un solo herbicida. En general, el rendimiento de maíz fue mejor con los tratamientos que tenían dos, tres o cuatro herbicidas que con los tratamientos que tenían un solo herbicida, lo cual se debe al mejor control de malezas con estos tratamientos.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K., Peterson, D. E., and Regehr, D. L. 2000. Control of imazethapyr-resistant common sunflower (Helianthus annuus) in soybean (Glycine max) and corn (Zea mays). Weed Technol. 14:133139.Google Scholar
Allen, J. R., Johnson, W. G., Smeda, R. J., and Kremer, R. J. 2000. ALS-resistant Helianthus annuus interference in Glycine max . Weed Sci. 48:461466.Google Scholar
Anonymous. 2002. Weed Science Society of America Herbicide Handbook. 8th ed. Champaign, IL Weed Science Society of America.Google Scholar
Baker, J. L. and Laflen, J. M. 1979. Runoff losses of surface-applied herbicides as affected by wheel tracks and incorporation. J. Environ. Qual. 8:602607.Google Scholar
Baker, J. L. and Mickelson, S. K. 1994. Application technology and best management practices for minimizing herbicide runoff. Weed Technol. 8:862869.Google Scholar
Bhowmik, P. C., Vrabel, T. E., Prostack, R., and Cartier, J. 1996. Activity of RPA 201772 in controlling weed species in field corn. Proc. Int. Weed Control Congr. (Copenhagen) 2:807812.Google Scholar
Birschbach, E. D., Myers, M. G., and Harvey, M. R. 1993. Triazine-resistant smooth pigweed (Amaranthus hybridus) control in field corn (Zea mays). Weed Technol. 7:431436.Google Scholar
Buttle, J. M. 1990. Metolachlor transport in surface runoff. J. Environ. Qual. 19:531538.Google Scholar
Chomas, A. J. and Kells, J. J. 2004. Triazine-resistant common lambsquarters (Chenopodium album) control in corn with preemergence herbicides. Weed Technol. 18:551554.Google Scholar
Darmency, H. and Gasquez, J. 1990. Appearance and spread of triazine resistance in common lambsquarters (Chenopodium album). Weed Technol. 4:173177.Google Scholar
Deege, R., Foerster, H., Schmidt, R. R., Thielert, W., Tice, M. A., Aagesen, G. J., Bloomberg, J. R., and Santel, H. J. 1995. BAY 5043: a new low rate herbicide for preemergence grass control in corn, cereals, soybeans and other selected crops. Pages 4348. in Proceedings of the Brighton Crop Protection Conference: Weeds. Volumes 2–4. Alton, Hampshire, U.K. British Crop Protection Council.Google Scholar
Foes, M. J., Liu, L., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.Google Scholar
Gajbjoue, V. T. and Gupta, S. 2001. Adsorption-desorption behaviour of flufenacet in five different soils of India. Pest Manag. Sci. 57:633639.Google Scholar
Geier, P. W. and Stahlman, P. W. 1997. Efficacy of isoxaflutole alone and in combination in corn. Proc. North. Cent. Weed Sci. Soc. 52:81.Google Scholar
Gerwick, B. C., Subramanian, M. V., and Loney-Gallant, V. I. 1990. Mechanism of action of the 1,2,4-Trizolo[1,5-a]pyrimidines. Pestic. Sci. 29:357364.Google Scholar
Hagood, E. S. Jr. 1989. Control of triazine-resistant smooth pigweed (Amaranthus hybridus) and common lambsquarters (Chenopodium album) in no-till corn (Zea mays). Weed Technol. 3:136142.Google Scholar
Hall, J. K., Hartwig, N. L., and Hoffman, L. D. 1983. Application mode and alternate cropping effects on atrazine losses from a hillside. J. Environ. Qual. 12:336340.CrossRefGoogle Scholar
Haydon, T. A. and Burnside, O. C. 1987. Effect of herbicide incorporation methods on shattercane Sorghum bicolor control in corn Zea mays . Weed Sci. 35:364372.Google Scholar
Heap, I. 2010. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/in.asp. Accessed: October 2, 2010.Google Scholar
Kleschick, W. A., Gerwick, B. C., Carson, C. M., Monte, W. T., and Snider, S. W. 1992. DE-498, a new acetolactate synthase inhibiting herbicide with multicrop selectivity. J. Agric. Food Chem. 40:10831085.Google Scholar
Pallett, K. E., Cramp, S. M., Little, J. P., Veerasekaran, P., Crudace, A. J., and Slater, A. E. 2001. Isoxaflutole: the background to its discovery and the basis of its herbicidal properties. Pest Manag. Sci. 57:133142.Google Scholar
Pantone, D. J., Young, R. A., Buhler, D. D., Eberlein, C. V., Koskinen, W. C., and Forcella, F. 1992. Water quality impacts associated with pre- and postemergence applications of atrazine in maize. J. Environ. Qual. 21:567573.Google Scholar
Pik, A. J., Peake, E., Strosher, M. T., and Hodgson, G. W. 1977. Fate of 3,6-dichloropicolinic acid in soils. J. Agric. Food Chem. 25:10541061.Google Scholar
Reynolds, D. B., Jordan, D. L., Vidrine, P. R., and Griffin, J. L. 1995. Broadleaf weed control with trifluralin + flumetsulam in soybean (Glycine max). Weed Technol. 9:446451.Google Scholar
Ritter, R. L. and Menbere, H. 2001. Preemergence and postemergence control of triazine-resistant common lambsquarters (Chenopodium album) in no-till corn (Zea mays). Weed Technol. 15:879884.Google Scholar
Rouchaud, J., Neus, O., Callens, D., and Bulcke, R. 1998. Isoxaflutole herbicide soil persistence and mobility in summer corn and winter wheat crops. Bull. Environ. Contam. Toxicol. 60:577584.Google Scholar
Sprague, C. L., Kells, J. J., and Penner, D. 1997. Effect of application timing on corn tolerance and weed control with isoxaflutole. Weed Sci. Soc. Am. Abstr. 37:13.Google Scholar
Sprague, C. L. and Penner, D. 1998. Basis for different corn tolerance of four corn hybrids to isoxaflutole. Proc. North. Cent. Weed Sci. Soc. 53:94.Google Scholar
Taylor-Lovell, S. and Wax, L. M. 2001. Weed control in field corn (Zea mays) with RPA 201772 combinations with atrazine and S-metolachlor. Weed Technol. 15:49256.Google Scholar
Vencill, W. K., Wilcut, J. W., and Monks, C. D. 1995. Efficacy and economy of weed management systems for sicklepod (Senna obtusifolia) and morningglory (Ipomoea spp.) control in soybean (Glycine max). Weed Technol. 9:456461.Google Scholar
Watts, D. W. and Hall, J. K. 1996. Tillage and application effects on herbicide leaching and runoff. Soil Tillage Res. 39:241257.Google Scholar
Wrucke, M. A., Simkins, G. S., and Veilleux, D. P. 1997. Effect of cultivation on performance of isoxaflutole in corn. Proc. North. Cent. Weed Sci. Soc. 52:17.Google Scholar