Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T15:03:12.016Z Has data issue: false hasContentIssue false

Efficacy of Fall- and Spring-Applied Pyroxasulfone For Herbicide-Resistant Weeds in Field Pea

Published online by Cambridge University Press:  20 January 2017

Breanne D. Tidemann*
Affiliation:
Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
Linda M. Hall
Affiliation:
Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
Eric N. Johnson
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Scott Research Farm, P.O. Box 10, Scott, Saskatchewan, Canada, S0K 4A0
Hugh J. Beckie
Affiliation:
AAFC, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada, S7N 0X2
Ken L. Sapsford
Affiliation:
College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A8
Lisa L. Raatz
Affiliation:
Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
*
Corresponding author's E-mail: [email protected].

Abstract

Field trials were initiated in fall 2011 to determine the potential of pyroxasulfone to control acetolactate synthase (ALS) inhibitor-resistant weeds in field pea. Pyroxasulfone was applied in split-plot trials at five locations in western Canada using fall and PRE spring applications of 0 to 400 g ai ha−1. Trial locations were chosen with a range of soil organic matter content: 2.9, 4.3, 5.5, 10.5, and 10.6% at Scott, Kernen, Kinsella, Melfort, and Ellerslie, respectively. The herbicide dose required to reduce biomass by 50% (ED50) in false cleavers ranged between 53 and 395 g ha−1 at Scott and Ellerslie, respectively. Wild oat ED50s varied between 0.54 g ha−1 at Scott in the fall and 410 g ai ha−1 in the spring at Melfort. ED50s for wild oat and false cleavers varied by 7.4- and 746-fold, respectively, depending primarily on the organic matter content at the trial location. The effect of application timing was not consistent. Significant yield reductions and pea injury occurred at 150 and 100 g ha−1 and higher at Kernen and Scott, respectively. Low organic matter and high precipitation levels at these locations indicates increased herbicide activity under these conditions. Pyroxasulfone may allow control of ALS inhibitor-resistant false cleavers and wild oat; however, locations with high soil organic matter will require higher rates than those with low organic matter for similar control levels.

En el otoño de 2011, se iniciaron estudios de campo para determinar el potencial de pyroxasulfone para el control de malezas resistentes a inhibidores de acetolactate synthase (ALS) en campos de guisante. Se aplicó pyroxasulfone en ensayos de parcelas-divididas en cinco localidades en el oeste de Canadá usando aplicaciones en el otoño y PRE en la primavera de 0 y 400 g ai ha−1. Las localidades fueron escogidas para abarcar diferentes contenidos de materia orgánica: 2.9, 4.3, 5.5, 10.5 y 10.6% en Scott, Kernen, Kinsella, Melfort, y Ellerslie, respectivamente. La dosis requerida para reducir la biomasa en 50% (ED50) de Galium spurium varió entre 53 y 395 g ha−1 en Scott y Ellerslie, respectivamente. La ED50 para Avena fatua varió entre 0.54 g ha−1 en Scott en el otoño y 410 g ha−1 en la primavera en Melfort. Las ED50 variaron para A. fatua y G. spurium entre 7.4 y 746 veces, respectivamente, dependiendo principalmente del contenido de materia orgánica en la localidad donde se realizó el experimento. El efecto del momento de aplicación no fue consistente. Reducciones significativas de rendimiento y daño en el guisante ocurrieron a dosis de 150 y 100 g ha−1 y mayores en Kernen y Scott, respectivamente. Bajos niveles de materia orgánica y altos niveles de precipitación en estas localidades indican, que bajo estas condiciones, hay una mayor actividad del herbicida. Pyroxasulfone podría permitir el control de G. spurium y A. fatua resistentes a herbicidas inhibidores de ALS. Sin embargo, en lugares con alto contenido de materia orgánica se requerirán dosis más altas que las requeridas en suelos con bajos niveles de materia orgánica para obtener un control similar.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2006) Pyroxasulfone Global Technical Bulletin. Tokyo, Japan: Kumiai Chemical Industry Co., Ltd Google Scholar
Beckie, HJ, Lozinski, C, Shirriff, S, Brenzil, C (2013) Herbicide-resistant weeds in the Canadian prairies: 2007–2011. Weed Technol 27:171183 CrossRefGoogle Scholar
Boydston, RA, Felix, J, Al-Khatib, K (2012) Preemergence herbicides for potential use in potato (Solanum tuberosum) production. Weed Technol 26:731739 CrossRefGoogle Scholar
Busi, R, Gaines, T, Walsh, M, Powles, S (2012) Understanding the potential for resistance evolution to the new herbicide pyroxasulfone: Field selection at high doses versus recurrent selection at low doses. Weed Res 52:489499 CrossRefGoogle Scholar
Hall, LM, Stromme, KM, Horsman, GP, Devine, MD (1998) Resistance to acetolactate synthase inhibitors and quinclorac in a biotype of false cleavers (Galium spurium). Weed Sci 46:390396 CrossRefGoogle Scholar
Harker, KN (2001) Survey of yield losses due to weeds in central Alberta. Can J Plant Sci 81:339342 CrossRefGoogle Scholar
Heap, I (2013) International Survey of Herbicide Resistant Weeds. Available at http://www.weedscience.org/In.asp. Accessed June 10, 2013Google Scholar
Hulting, AG, Dauer, JT, Hinds-Cook, B, Curtis, D, Koepke-Hill, RM, Mallory-Smith, C (2012) Management of italian ryegrass (Lolium perenne ssp. multiflorum) in western Oregon with preemergence applications of pyroxasulfone in winter wheat. Weed Technol 26:230235 CrossRefGoogle Scholar
King, SR, Garcia, JO (2008) Annual broadleaf control with KIH-485 in glyphosate-resistant furrow-irrigated corn. Weed Technol 22:420424 CrossRefGoogle Scholar
Knezevic, SZ, Porpiglia, PJ, Scott, J, Datta, A (2009) Dose–response curves of KIH-485 for preemergence weed control in corn. Weed Technol 23:3439 CrossRefGoogle Scholar
Knezevic, SZ, Streibig, JC, Ritz, C (2007) Utilizing R software package for dose–response studies: The concept and data analysis. Weed Technol 21:840848 CrossRefGoogle Scholar
Mueller, TC, Steckel, LE (2011) Efficacy and dissipation of pyroxasulfone and three chloroacetamides in a Tennessee field soil. Weed Sci 59:574579 CrossRefGoogle Scholar
Odero, DC, Wright, AL (2013) Response of sweet corn to pyroxasulfone in high organic matter soils. Weed Technol 27:341346 CrossRefGoogle Scholar
Olson, BL, Zollinger, RK, Thompson, CR, Peterson, DE, Jenks, B, Moechnig, M, Stahlman, PW (2011) Pyroxasulfone with and without sulfentrazone in sunflower (Helianthus annuus). Weed Technol 25:217221 CrossRefGoogle Scholar
Park, B, Lopetinsky, K, Bjorklund, R, Buss, T, Eppich, S, Laflamme, P, Miller, N, Olson, M, Piquette, K (1999) Pulse Crops in Alberta. Edmonton, Alberta: Alberta Agriculture, Food and Rural Development. P. 149 Google Scholar
R Development Core Team (2012). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/. Accessed: March 10, 2013Google Scholar
Ritz, C, Streibig, JC (2005) Bioassay analysis using R. Journal of Statistical Software 12:122 CrossRefGoogle Scholar
SAS Institute Inc. (2007) SAS/STAT User's Guide: Statistics. SAS Institute, Cary, North Carolina, U.S.A. Google Scholar
Sikkema, SR, Soltani, N, Sikkema, PH, Robinson, DE (2008) Tolerance of eight sweet corn (Zea mays L.) hybrids to pyroxasulfone. HortScience 43:170172 CrossRefGoogle Scholar
Soltani, N, Shropshire, C, Sikkema, PH (2012) Response of spring planted cereals to pyroxasulfone. Int Res J Plant Sci 3:113 Google Scholar
Statistics Canada (2012) Field and Special Crops (Seeded Area). http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/prim11a-eng.htm. Accessed April 3, 2013Google Scholar
Tanetani, Y, Kaku, K, Kawai, K, Fujioka, T, Shimizu, T (2009) Action mechanism of a novel herbicide, pyroxasulfone. Pestic Biochem Physiol 95:4755 CrossRefGoogle Scholar
Walsh, MJ, Fowler, TM, Crowe, B, Ambe, T, Powles, SB (2011) The potential for pyroxasulfone to selectively control resistant and susceptible rigid ryegrass (Lolium rigidum) biotypes in Australian grain crop production systems. Weed Technol 25:3037 CrossRefGoogle Scholar
Westra, EP (2012) Adsorption, leaching, and dissipations of pyroxasulfone and two chloroacetabmide herbicides. . Fort Collins, CO: Colorado State University. 69 pGoogle Scholar