Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T16:40:49.212Z Has data issue: false hasContentIssue false

Efficacy and Economics of Herbicide Programs Compared to Methyl Bromide for Weed Control in Polyethylene-Mulched Bell Pepper

Published online by Cambridge University Press:  20 January 2017

Pratap Devkota*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Ron Rainey
Affiliation:
Department of Agricultural Economics, University of Arkansas, 2301 South University Avenue, Little Rock, AR 72204
*
Corresponding author's E-mail: [email protected].

Abstract

In the absence of an effective alternative to methyl bromide (MeBr), weeds cause a significant economic loss in bell pepper production. A study was conducted to evaluate the efficacy and economics of PRE followed by (fb) POST-directed (POST-DIR) herbicide programs compared with MeBr for weed control in low-density polyethylene (LDPE) mulched bell pepper production. Imazosulfuron at 0.112, 0.224, and 0.336 kg ai ha−1 and S-metolachlor at 1.6 kg ai ha−1 were PRE-applied fb POST-DIR applied mixture of trifloxysulfuron + halosulfuron at 0.008 and 0.027 kg ai ha−1, respectively, at 4 wk after transplanting (WATP). The standard MeBr treatment (67 and 33% mixture of MeBr + chloropicrin) was applied at 390 kg ai ha−1. In addition, a weed-free (hand weeding) and a non-treated control were used for comparison. S-metolachlor-containing herbicide program controlled Palmer amaranth ≥ 90%, large crabgrass ≥ 78%, and yellow nutsedge ≥ 90%, which were comparable to MeBr. After POST-DIR herbicide application, bell pepper was injured ≥ 17% with the S-metolachlor-containing herbicide program at 6 WATP; however, the crop later recovered. Marketable bell pepper yield in plots treated with S-metolachlor (≥ 29.9 ton ha−1) was comparable to those treated with MeBr. Economic evaluation of the imazosulfuron herbicide programs demonstrated the loss of ≥ $7,300 ha−1. Conversely, the S-metolachlor-containing herbicide program was profitable with a net return of $9,912 ha−1. In addition, the S-metolachlor herbicide program generated a net profit of $173 ha−1 compared to the MeBr application. Therefore, PRE-applied S-metolachlor fb POST-DIR applied trifloxysulfuron + halosulfuron is a potential alternative to MeBr for weed management in LDPE-mulched bell pepper production given the weed spectrum evaluated in this study.

En ausencia de una alternativa efectiva a methyl bromide (MeBr), las malezas causan pérdidas económicas significativas en la producción de pimentón. Se realizó un estudio para evaluar la eficacia y los parámetros económicos de programas de herbicidas PRE seguidos de (fb) POST-dirigido (POST-DIR) y compararlos con MeBr para el control de malezas en coberturas de polyethylene de baja densidad (LDPE) en la producción de pimentón. Imazosulfuron a 0.112, 0.224, y 0.336 kg ai ha−1 and S-metolachlor a 1.6 kg ai ha−1 fueron aplicados PRE fb una mezcla de trifloxysulfuron + halosulfuron a 0.008 y 0.027 kg ai ha−1 aplicados POST-DIR, respectivamente, a 4 semanas después del trasplante (WATP). El tratamiento estándar con MeBr (mezcla de MeBr + chloropicrin a 67 y 33%) fue aplicado a 390 kg ai ha−1. Adicionalmente, un testigo libre de malezas (deshierba manual) y un testigo sin tratamiento fueron usados para fines de comparación. El programa de herbicidas que contenía S-metolachlor controló Amaranthus palmeri ≥ 90%, Digitaria sanguinalis ≥ 78%, y Cyperus esculentus ≥ 90%, lo que fue comparable a MeBr. Después de la aplicación POST-DIR de herbicidas, el pimentón sufrió daño ≥ 17% con el programa de herbicidas que contenía S-metolachlor, a 6 WATP, aunque el cultivo se recuperó posteriormente. En parcelas tratadas con S-metolachlor, el rendimiento de pimentón comercializable (≥ 29,9 ton ha−1) fue comparable al de las parcelas tratadas con MeBr. La evaluación económica de los programas de herbicidas con imazosulfuron demostró que se dio una pérdida de ≥ $7,300 ha−1. En cambio, los programas de herbicidas que contenían S-metolachlor fueron rentables con una ganancia neta de $9,912 ha−1. Además, los programas de herbicidas con S-metolachlor generaron una ganancia neta de $173 ha−1 al compararse con la aplicación de MeBr. De esta forma, el programa de S-metolachlor aplicado PRE fb trifloxysulfuron + halosulfuron aplicados POST-DIR es una alternativa potencial a MeBr para el control de malezas en producción de pimentón con coberturas LDPE, para el espectro de especies de malezas evaluado en este estudio.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907

References

Literature Cited

Adcock, CW, Foshee, WG III, Wehtje, GR, Gilliam, CH (2008) Herbicide combinations in tomato to prevent nutsedge (Cyperus esculentus) punctures in LDPE mulch for multi-cropping systems. Weed Technol 22:136141 Google Scholar
Anderson, WP (1999) Perennial Weeds: Characteristics and Identification of Selected Herbaceous Species. 1st edn. Ames, Iowa: Iowa State University Press. 228 pGoogle Scholar
Bangarwa, SK, Norsworthy, JK, Gbur, EE (2009a) Cover crop and herbicide combinations for weed control in polyethylene-mulched bell pepper. HortTechnology 19:405410 Google Scholar
Bangarwa, SK, Norsworthy, JK, Gbur, EE (2009b) Integration of a Brassicaceae cover crop with herbicides in plasticulture tomato. Weed Technol 23:280286 Google Scholar
Bangarwa, SK, Norsworthy, JK, Gbur, EE, Mattice, JD (2010) Phenyl isothiocyanate performance on purple nutsedge under virtually impermeable film mulch. HortTechnology 20:402408 Google Scholar
Bollman, SL, Sprague, CL (2007) Optimizing S-metolachlor and dimethanamid-P in sugarbeet microrate treatments. Weed Technol 21:10541063 Google Scholar
Boydston, RA (2007) Potato and weed response to postemergence-applied halosulfuron, rimsulfuron, and EPTC. Weed Technol 2:465469 Google Scholar
Branson, JW, Smith, KL, Barrentine, JL (2005) Comparison of trifloxysulfuron and pyrithiobac in glyphosate-resistant and bromoxynil-resistant cotton. Weed Technol 19:404410 Google Scholar
Devkota, P, Norsworthy, JK, Rainey, R (2013) Efficacy and economics of herbicide programs compared to methyl bromide for weed control in polyethylene-mulched tomato. Weed Technol 27:580589 Google Scholar
Dittmar, PJ, Jennings, KM, Monks, DW (2010) Response of diploid watermelon to imazosulfuron POST. Weed Technol 24:127129 Google Scholar
Dittmar, PJ, Monks, DW, Jennings, KM (2012) Effect of drip-applied herbicides on yellow nutsedge (Cyperus esculentus) in plasticulture. Weed Technol 26:243247 Google Scholar
Fu, R, Ashley, RA (2006). Interference of large crabgrass (Digitaria sanguinalis), redroot pigweed (Amaranthus retroflexus), and hairy galinsoga (Galinsoga ciliata) with bell pepper. Weed Sci 54:364372 Google Scholar
Godara, RK, Williams, BJ, Webster, EP, Griffin, JL, Miller, DK (2012) Evaluation of imazosulfuron for broadleaf weed control in drill-seeded rice. Weed Technol 26:1923 Google Scholar
Hartzler, GH, Foy, C L (1983) Efficacy of three postemergence grass herbicides for soybeans. Weed Sci 31:557561 Google Scholar
Holmes, GJ, Kemble, JM (2010) Vegetable crop handbook for the southeastern United States. 11th edn. Lincolnshire, IL: Vance. 276 pGoogle Scholar
Hood, K, Ingram, D, Nagel, DH, Layton, HC (2011) Traditional vegetables 2012 planning budgets. Mississippi State University, Department of Agricultural Economics budget report 2011-08 Google Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 Google Scholar
Miller, RM, Dittmar, PJ (2014) Effect of PRE and POST-directed herbicides for season-long nutsedge (Cyperus spp.) control in bell pepper. Weed Technol 28:518526 Google Scholar
Monks, DW, Schultheis, JR (1998) Critical weed-free period for large crabgrass (Digitaria sanguinalis) in transplanted watermelon (Citrullus lanatus). Weed Sci 46:530532 Google Scholar
Morales-Garcia, D, Stewart, KA, Seguin, P, Madramootoo, C (2010) Saline drip irrigation and polyethylene mulch on yield and water use efficiency of bell pepper. Int J Veg Sci 16:314 Google Scholar
Morales-Payan, JP, Santos, BM, Stall, WM, Bewick, TA (1997) Effect of purple nutsedge (Cyperus rotundus) on tomato (Lycopersicon esculentum) and bell pepper (Capsicum annum) vegetative growth and fruit yield. Weed Technol 11:672676 Google Scholar
Morrica, P, Fidente, P, Serenella, S, Ventriglia, M (2002) Degradation of imazosulfuron in different soils-HPLC determination. Biomed Chromatogr 16:489494 Google Scholar
Morrica, P, Giordano, A, Seccia, S, Ungaro, F, Ventriglia, M (2001) Degradation of imazosulfuron in soil. Pest Manag Sci 57:360365 Google Scholar
Motis, TN, Locascio, SJ, Gilreath, JP, Stall, WM (2003) Season-long interference of yellow nutsedge (Cyperus esculentus) with polyethylene-mulched bell pepper (Capsicum annum). Weed Technol 17:543549 Google Scholar
Motis, TN, Logascio, SJ, Gilreath, JP (2004) Critical yellow nutsedge-free period for polyethylene-mulched bell pepper. HortScience 39:10451049 Google Scholar
Norsworthy, JK, Meister, CW (2007) Tolerance of cantaloupe to postemergence applications of rimsulfuron and halosulfuron. Weed Technol 21:3036 Google Scholar
Norsworthy, JK, Oliveira, MJ, Jha, P, Malik, M, Buckelew, JK, Jennings, KM, Monks, DW (2008) Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol 22:296302 Google Scholar
Rainey, RL (2010) Utilizing enterprise budgets. http://www.aragriculture.org/horticulture/budgets/Utilizing_Enterprise_Budgets.pdf. Accessed March 18, 2014.Google Scholar
Riar, DS, Norsworthy, JK (2011) Use of imazosulfuron in herbicide programs for drill-seeded rice (Oryza sativa) in the Mid-south United States. Weed Technol 25:548555 Google Scholar
Santos, BM, Gilreath, JP, Siham, MN (2007) Comparing fumigant retention of polyethylene mulches for nutsedge control in Florida spodosols. HortTechnology 17:308311 Google Scholar
Santos, BM, Morales-Payan, JP, Stall, WM, Bewick, TA, Shilling, DG (1997) Effects of shading on the growth of nutsedges (Cyperus spp.). Weed Sci 45:670673 Google Scholar
Singh, S, Singh, M (2004) Effect of growth stage on trifloxysulfuron and glyphosate efficacy in twelve weed species of citrus groves. Weed Technol 18:10311036 Google Scholar
[USDA] United States Department of Agriculture (2005) United States standards for grades of sweet peppers. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName5STELPRDC5050318. Accessed August 16, 2013Google Scholar
[USDA] United States Department of Agriculture (2014) National Agricultural Statistics Service. http://www.nass.usda.gov/Publications/Todays_Reports/reports/vgan0314.pdf. Accessed July 10, 2014Google Scholar
[US EPA] United States Environmental Protection Agency (2014) The Phaseout of Methyl Bromide. http://www.epa.gov/ozone/mbr/. Accessed January 25, 2014Google Scholar
Webster, TM (2005) Mulch type affects growth and tuber production of yellow nutsedge and purple nutsedge. Weed Sci 53:834838 Google Scholar