Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T22:32:52.442Z Has data issue: false hasContentIssue false

Effects of Timing and Frequency of Flame Cultivation for Dewberry Control

Published online by Cambridge University Press:  20 January 2017

Katherine M. Ghantous*
Affiliation:
University of Massachusetts, Amherst Cranberry Station, P.O. Box 569, East Wareham, MA 02538
*
Corresponding author's E-mail: [email protected]

Abstract

Flame cultivation (FC) uses brief exposures of high temperature to control weeds. Three sites in southeastern Massachusetts with dewberry present were studied over a 2-yr period to determine if seasonal timing and frequency of exposure to FC would reduce dewberry stem length and biomass, both in the year of and the year following treatment, and also to evaluate whether FC treatments altered the ratio (sugar : starch) of nonstructural carbohydrates (NSC) in dewberry roots. Dewberry plants were treated with a 9-s exposure to an open-flame hand-held torch at seven different timing regimes (one application in June, July, or August or two applications in June/July, June/August, and July/August, or nontreated). After 1 yr, all treatments showed reduced aboveground dewberry biomass compared to nontreated plots. The timing and frequency of FC treatments were not significant when the weed was growing amongst cranberry vines, but were significant when weeds were treated in the absence of cranberry. Exposure to FC did not affect the ratio of NSC in roots in the year after treatment, indicating that the relative amounts allocated to each type of storage carbohydrate did not differ from nontreated plants, even though the overall amount allocated to root biomass was reduced.

El control con llamas (FC) usa exposiciones a alta temperatura de corta duración para el control de malezas. Tres sitios en el sureste de Massachusetts con presencia de Rubus (Rubus hispidus y Rubus flagellaris) fueron estudiados durante un período de 2 años para determinar si el momento durante la temporada y la frecuencia de exposición a FC reduciría el largo de los tallos y la biomasa de Rubus, en el año del tratamiento y en el año siguiente al tratamiento, y para evaluar si los tratamientos con FC alteraron la proporción (azúcar:almidón) de los carbohidratos no-estructurales (NSC) en las raíces de Rubus. Las plantas de Rubus fueron tratadas con una exposición de 9 s con una antorcha de llama expuesta, sostenida manualmente, con siete regímenes diferentes del momento de aplicación (una aplicación en Junio, Julio, o Agosto, o dos aplicaciones Junio/Julio, Junio/Agosto, y Julio/Agosto, o sin tratamiento). Después de un año, todos los tratamientos mostraron una biomasa aérea reducida de Rubus en comparación con las parcelas sin tratamiento. El momento y la frecuencia de los tratamientos FC no fueron significativos cuando la maleza estaba creciendo entre enredaderas de arándano, pero fueron significativas cuando las malezas fueron tratadas en ausencia de arándano. La exposición a FC no afectó la proporción de NSC en las raíces en el año después del tratamiento, lo que indicó que las cantidades relativas producidas de cada tipo de carbohidrato de almacenaje no difirió de las plantas sin tratamiento, aunque la cantidad total transportada a la raíz fue reducida.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Steve Fennimore, University of California, Davis.

References

Literature Cited

Botelho, MR, Vanden Heuvel, JE (2005) High dissolved oxygen concentration of floodwater reduces carbohydrate concentration of cranberry uprights during flooding. HortScience 40: 569573 Google Scholar
Bowen, BJ, Pate, JS (1993) The significance of root starch in post-fire shoot recovery of the resprouter Stirlingia latifolia R. Br. (Proteaceae). Ann Bot 72: 716 Google Scholar
Daniell, JW, Chappell, WE, Couch, HB (1969) Effect of sublethal and lethal temperatures on plant cells. Plant Physiol 44: 16841689 CrossRefGoogle ScholarPubMed
DeMoranville, CJ, Sandler, HA, Shumaker, DE, Averill, AL, Caruso, FL, Sylvia, MM, Pober, DM (2005) Fall flooding for management of cranberry fruitworm (Acrobasis vaccinii) and dewberry (Rubus hispidus) in Massachusetts cranberry production. J Crop Prot 24: 9991006 CrossRefGoogle Scholar
Diver, S (2002) Flame Weeding for Vegetable Crops. https://attra.ncat.org/attra-pub/summaries/summary.php?pub=110. Accessed May 16, 2014Google Scholar
Eissenstat, DM, Duncan, LW (1992) Root growth and carbohydrate responses in bearing citrus trees following partial canopy removal. Tree Physiol 10: 245257 CrossRefGoogle ScholarPubMed
Else, M, Sandler, HA, Schluter, S (1995) Weed mapping as a component of integrated pest management in cranberry production. HortTechnology 5: 302305 Google Scholar
Ghantous, K, Sandler, HA, Autio, WR, Jeranyama, P (2013a) Damage and recovery of cranberry vines from exposure to handheld flame cultivators. HortScience 48: 870874 CrossRefGoogle Scholar
Ghantous, KM (2013) Use of flame cultivation as a nonchemical weed control in cranberry cultivation. Ph.D. dissertation. Amherst, MA: University of Massachusetts. 93 pGoogle Scholar
Ghantous, KM, Sandler, HA (2010) Flame cultivation as an option in the fight against weeds. Fruit Growers News 48: 1415 Google Scholar
Ghantous, KM, Sandler, HA, Autio, WR, Jeranyama, P (2012) Handheld flame cultivators as a management option for woody weeds. Weed Technol 26: 371375 CrossRefGoogle Scholar
Ghantous, KM, Sandler, HA, Autio, WR, Jeranyama, P (2013b) Damage and recovery of cranberry vines from exposure to handheld flame cultivators. HortScience 48: 870874 Google Scholar
Jensen, KIN, Hall, IV (1979) The biology of Canadian weeds. 36. Rubus hispidus L. Can J Plant Sci 59: 769776 CrossRefGoogle Scholar
Kays, JS, Canham, CD (1991) Effects of time and frequency of cutting on hardwood root reserves and sprout growth. For Sci 37: 524539 Google Scholar
Knezevic, SZ, Stepanovic, S, Datta, A (2014) Growth stage affects response of selected weed species to flaming. Weed Technol 28: 233242 Google Scholar
Kozlowski, TT (1992) Carbohydrate sources and sinks in woody plants. Bot Rev 58: 107222 Google Scholar
Loescher, WH, McCamant, T, Keller, JD (1990) Carbohydrate reserves, translocation, and storage in woody plant roots. HortScience 25: 274281 Google Scholar
Miller, TW, Maupin, BG, Libbey, CR (2014) Comparison of four management programs for control of established perennial weeds in blueberry [electronic resource]. Acta Hortic 147–152Google Scholar
Parish, RL, Porter, WC, Vidrine, PR (1997) Flame cultivation as a complement to mechanical and herbicidal control of weeds. J Veg Crop Prod 3: 6583 CrossRefGoogle Scholar
Rask, AM, Andreasen, C, Kristoffersen, P (2012) Response of Lolium perenne to repeated flame treatments with various doses of propane. Weed Res 52: 131139 Google Scholar
Rifai, MN, Astatkie, T, Lacko-Bartosova, M, Gadus, J (2002) Effect of two different thermal units and three types of mulch on weeds in apple orchards. J Environ Eng Sci 1: 331338 Google Scholar
Sandler, HA, DeMoranville, CJ (2008) Cranberry Production: A Guide for Massachusetts. East Wareham, MA: University of Massachusetts Ext. Publ. CP-08. p 198 Google Scholar
Shrestha, A, Moretti, M, Mourad, N (2012) Evaluation of thermal implements and organic herbicides for weed control in a nonbearing almond (Prunus dulcis) orchard. Weed Technol 26: 110116 Google Scholar
Ulloa, SM, Datta, A, Knezevic, SZ (2010) Tolerance of selected weed species to broadcast flaming at different growth stages. Crop Prot 29: 13811388 Google Scholar
Vanden Heuvel, JE, Goffinet, MC (2008) The effects of flood initiation timing and water temperature during flooding on nonstructural carbohydrate concentration and anatomy of cranberry. HortScience 43: 338345 Google Scholar
Wargo, PM (1976) Variation of starch content among and within roots of red and white oak trees. Forest Sci 22: 468471 Google Scholar