Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T21:49:16.815Z Has data issue: false hasContentIssue false

Effects of Herbicides on Growth and Vegetative Reproduction of Creeping Rivergrass

Published online by Cambridge University Press:  20 January 2017

Sunny L. Bottoms
Affiliation:
School of Plant, Environmental and Soil Sciences, 104 M. B. Sturgis Hall, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
Eric P. Webster
Affiliation:
School of Plant, Environmental and Soil Sciences, 104 M. B. Sturgis Hall, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
Justin B. Hensley*
Affiliation:
School of Plant, Environmental and Soil Sciences, 104 M. B. Sturgis Hall, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
David C. Blouin
Affiliation:
Department of Experimental Statistics, 45 Agricultural Administration Building, Louisiana State University, Baton Rouge, LA 70803
*
Corresponding author's E-mail: [email protected].

Abstract

Studies were conducted to evaluate growth and reproductive capabilities of creeping rivergrass in response to rice herbicide programs. Creeping rivergrass grown from single-node stolon segments, multiple-node stolon segments, and rhizomes was treated with various herbicides to evaluate activity on subsequent growth and viability of nodes produced from treated plants. Comparison with the nontreated, cyhalofop, glyphosate, and imazethapyr reduced creeping rivergrass fresh weight by more than 84 to 96%. Glyphosate reduced sprouting of nodes from treated plants 93% compared with nontreated plants. Activity from these herbicides may decrease when applied to plants grown from rhizomes versus rhizome clusters. Plants treated with cyhalofop, glyphosate, and imazethapyr had reduced fresh weight of 36 to 46% when plants were grown from a rhizome cluster, and 69 to 90% when plants were grown from a single rhizome segment, compared with nontreated. Cyhalofop and glyphosate reduced node sprouting by 81 to 98% of nontreated, regardless of parent structure.

Se llevaron a cabo estudios para evaluar el crecimiento y las capacidades reproductivas de Echinochloa polystachya en respuesta a programas de herbicidas en el cultivo del arroz. E. polystachia cultivada a partir de segmentos de estolones de un solo nudo, de múltiples nudos y de rizomas, se trataron con varios herbicidas para evaluar su actividad en el subsecuente crecimiento y viabilidad de los nudos derivados de las plantas tratadas. El cyhalofop, glyphosate e imazethapyr redujeron el peso fresco en 84 a 96% en comparación al testigo no tratado. El glyphosate también redujo en 93% el brote de nudos en las plantas tratadas, en comparación con las no tratadas. La acción de estos herbicidas podría disminuirse cuando se aplica a plantas derivadas de rizomas versus grupos de rizomas. El cyhalofop, glyphosate e imazethapyr redujeron el peso fresco en 36 a 46% en comparación al testigo no tratado, cuando las plantas se cultivaron a partir de un grupo de rizomas y en 69 a 90% en comparación con los testigos no tratados, cuando las plantas se cultivaron a partir de un solo segmento de rizoma. El cyhalofop y el glyphosate redujeron el brote de nudos en 81 a 98% en comparación con las plantas no tratadas sin importar la estructura parental.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bottoms, S. L., Webster, E. P., and Hensley, J. B. 2011. Management of creeping rivergrass in rice production. Weed Sci. Soc. Am. Proc. In press.Google Scholar
Griffin, R. M., Webster, E. P., Zhang, W., and Blouin, D. C. 2008. Biology and control of creeping rivergrass (Echinochloa polystachya) in rice. Weed Technol 22:17.Google Scholar
Jacobs, J. and Mangold, J. 2009. Ecology and Management of Eurasian Watermilfoil (Myriophyllum spicatum L.). Washington, DC: U.S. Department of Agriculture–Natural Resources Conservation Service, Invasive Species Tech. Note No. MT-23. 6 p.Google Scholar
Piedade, M. T. F., Junk, W. J., and Long, S. P. 1997. Nutrient dynamics of the highly productive C-4 macrophyte Echinochloa polystachya on the Amazon floodplain. Funct. Ecol 11:6065.Google Scholar
Pompeo, M. L. M., Henry, R., and Moschini-Carlos, V. 1999. Chemical composition of tropical macrophyte Echinochloa polystachya (H.B.K.) Hitchcock in Jurumirim Reservoir (Sao Paulo, Brazil). Hydrobiologia 411:111.Google Scholar
SAS 2007. SAS/STAT User's Guide. Version 9.1. Cary, NC: SAS Institute. 1,445. p.Google Scholar
Webster, E. P., Griffin, R. M., and Blouin, D. C. 2007. Herbicide programs for managing creeping rivergrass (Echinochloa polystachya) in rice. Weed Technol 21:785790.Google Scholar
Zhang, W., Webster, E. P., and Blouin, D. C. 2005. Response of rice and barnyardgrass (Echinochloa crus-galli) to rates and timings of clomazone. Weed Technol 19:528531.Google Scholar