Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T19:30:21.475Z Has data issue: false hasContentIssue false

Effectiveness of Sulfosulfuron and Quinclorac for Weed Control during Switchgrass Establishment

Published online by Cambridge University Press:  20 January 2017

William S. Curran*
Affiliation:
Department of Crop and Soil Science, The Pennsylvania State University, University Park, PA 16802
Matthew R. Ryan
Affiliation:
Department of Crop and Soil Science, The Pennsylvania State University, University Park, PA 16802
Matthew W. Myers
Affiliation:
USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA 16802
Paul R. Adler
Affiliation:
USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA 16802
*
Corresponding author's E-mail: [email protected]

Abstract

We conducted a field experiment in 2007 and 2008 and repeated it in a separate field in 2008 and 2009 to test the effectiveness of two herbicides applied at two different times on weed control during switchgrass establishment. At 4 and 6 wk after switchgrass planting (WAP), sulfosulfuron was applied at 0.04 and 0.07 kg ai ha−1 with nonionic surfactant and quinclorac was applied at 0.28, 0.42, and 0.56 kg ai ha−1 with methylated seed oil. Herbicides applied at 4 WAP tended to be more effective than at 6 WAP. Sulfosulfuron provided greater control of smooth pigweed; however, quinclorac provided greater control of yellow foxtail, a grass weed that has traditionally been difficult to control with herbicides in switchgrass. Average yellow foxtail control was 73, 87, and 93% for quinclorac at 0.28, 0.42, and 0.56 kg ha−1, respectively, compared to 62 and 60% for sulfosulfuron at 0.04 and 0.07 kg ha−1, respectively. Switchgrass injury (chlorosis and height reduction relative to the untreated control) was observed, but most symptoms were not detectable by 8 wk after treatment (WAT) for most treatments. Plots that received quinclorac at 0.56 kg ha−1 at 6 WAP tended to have relatively low weed biomass and high total aboveground yield in the establishment year and relatively high total aboveground yield in the year after establishment.

Realizamos un experimento de campo en 2007–2008 y lo repetimos en otro campo en 2008–2009 para evaluar la efectividad en el control de malezas de dos herbicidas aplicados en dos diferentes momentos durante el establecimiento de Panicum virgatum. A las 4 y 6 semanas después de la siembra del P. virgatum (WAP), se aplicó sulfosulfuron a 0.04 y 0.07 kg ia ha−1 con surfactante no-iónico, y se aplicó quinclorac a 0.28, 0.42 y 0.56 kg ia ha−1 con aceite de soya metilado. Los herbicidas aplicados a las 4 WAP tendieron a ser más efectivos que a las 6 WAP. El sulfosulfuron proporcionó mayor control de Amaranthus hybridus; sin embargo, el quinclorac proporcionó mejor control de Setaria pumila, una maleza que ha sido tradicionalmente difícil de controlar con herbicidas en P. virgatum. El control promedio de Setaria fue de 73, 87 y 93% para quinclorac a los 0.28, 0.42 y 0.56 kg ha−1, respectivamente, comparado a 62 y 60% para sulfosulfuron a 0.04 y 0.07 kg ha−1, respectivamente. Se observaron daños en el P. virgatum (clorosis y reducción en altura en relación con el testigo no tratado), pero la mayoría de los síntomas no fueron detectables 8 semanas después del tratamiento (WAT) en la mayoría de los tratamientos. Las parcelas que recibieron quinclorac a 0.56 kg ha−1 a las 6 WAP tendieron a exhibir relativamente baja biomasa de la maleza y alto rendimiento de tejido aéreo en el año de establecimiento y en el año siguiente al establecimiento.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adler, P. R., Sanderson, M. A., Boateng, A. A., Weimer, P. J., and Jung, H. J. G. 2006. Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron. J. 98:15181525.Google Scholar
Bahler, C. C., Vogel, K. P., and Moser, L. E. 1984. Atrazine tolerance in warm-season grass seedlings. Agron. J. 76:891895.Google Scholar
Barney, J. N. and Ditomaso, J. M. 2008. Nonnative species and bioenergy: Are we cultivating the next invader? Bioscience 58:6470.Google Scholar
Boydston, R. A., Collins, H. P., and Fransen, S. C. 2010. Response of three switchgrass (Panicum virgatum) cultivars to mesotrione, quinclorac, and pendimethalin. Weed Technol. 24:336341.Google Scholar
Bravo, M. A. and Curran, W. S. 2001. A survey of triazine-resistant common lambsquarters on Pennsylvania farms. Northeast. Weed Sci. Soc. 55:18.Google Scholar
Buhler, D. D., Netzer, D. A., Riemenschneider, D. E., and Hartzler, R. G. 1998. Weed management in short rotation poplar and herbaceous perennial crops grown for biofuel production. Biomass Bioenergy 14:385394.Google Scholar
Curran, W. S., Myers, M., and Adler, P. 2009. In search of effective grass control during switchgrass establishment. Northeast. Weed Sci. Soc. 63:49.Google Scholar
Curran, W. S., Myers, M. W., Adler, P. R., and Ryan, M. R. 2010. An integrated weed management approach for switchgrass establishment. Weed Sci. Soc. Am. 50:82.Google Scholar
Curran, W. S., Shaffer, J. A., Schnabel, R. R., and Werner, E. L. 1998. Switchgrass tolerance to several pre and post applied corn herbicides. Proc. ASA-CSSA-SSSA Conf. 98:22.Google Scholar
Fromke, C. and Bretz, F. 2004. Simultaneous tests and confidence intervals for the evaluation of agricultural field trials. Agron. J. 96:13231330.Google Scholar
Hintz, R. L., Harmoney, K. R., Moore, K. J., George, J. R., and Brummer, E. C. 1998. Establishment of switchgrass and big bluestem in corn with atrazine. Agron. J. 90:591596.Google Scholar
Lair, K. and Redente, E. F. 2004. Influence of auxin and sulfonylurea herbicides on seeded native communities. J. Range Manag. 57:211218.Google Scholar
Martin, A. R., Moomaw, R. S., and Vogel, K. P. 1982. Warm-season grass establishment with atrazine. Agron. J. 74:916920.Google Scholar
Masters, R. A. 1995. Establishment of big bluestem and sand bluestem cultivars with metolachlor and atrazine. Agron. J. 87:592596.Google Scholar
McLaughlin, S. B. and Kszos, L. A. 2005. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515535.Google Scholar
Mitchell, R., Vogel, K., Berdahl, J., and Masters, R. 2010. Herbicides for establishing switchgrass in the central and northern Great Plains. BioEnergy Res. 4:17.Google Scholar
Myers, M., Adler, P., and Curran, W. 2006. Evaluation of weed control during switchgrass establishment with postemergence herbicides. Proc. Eastern Native Grass Conf. 5:175.Google Scholar
Onofri, A., Carbonell, E. A., Piepho, H. P., Mortimer, A. M., and Cousens, R. D. 2010. Current statistical issues in weed research. Weed Res. 50:524.Google Scholar
Parrish, D. J. and Fike, J. H. 2005. The biology and agronomy of switchgrass for biofuels. Crit. Rev. Plant Sci. 24:423459.Google Scholar
Peters, T. J., Moomaw, R. S., and Martin, A. R. 1989. Herbicides for postemergence control of annual grass weeds in seedling forage grasses. Weed Sci. 37:375379.Google Scholar
Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J. Jr., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., and Tschaplinski, T. 2006. The path forward for biofuels and biomaterials. Science 311:484489.Google Scholar
Renz, M. 2009. Establishment of switchgrass for biofuel production in Wisconsin. Proc. North Central Weed Sci. Soc. 64:159.Google Scholar
Sanderson, M. A., Brink, G. E., Higgins, K. F., and Naugle, D. E. 2004. Alternative uses of warm-season forage grasses. Warm-season (C4) grasses. Agron. Monogr. 45:389417.Google Scholar
Wilson, R. G. 1995. Effect of imazethapyr on perennial grasses. Weed Technol. 9:187191.Google Scholar