Article contents
Effect of Tillage on Weed Populations in Continuous Barley (Hordeum vulgare)
Published online by Cambridge University Press: 20 January 2017
Abstract
The influence of four tillage systems, varying from intensive to zero tillage, on weed populations and the vertical distribution of weed seeds in the soil was determined at Alliance, Hairy Hill, and Wainwright in northeastern Alberta. The soil was sampled at two depths (0 to 5 and 5 to 10 cm) in fall. Weed seedling emergence in the greenhouse over the winter was assumed to represent the type and amount of weed seeds present in the soil seedbank. Emerged weed seedlings were also identified and counted in the field in spring. In the zero-tillage system, most of the weed seeds were close to the soil surface (0 to 5 cm) at Alliance and Wainwright but were deeper (5 to 10 cm) at Hairy Hill. The winter annuals, field pennycress, shepherd's-purse, and flixweed, and the summer annuals, wild buckwheat and common lambsquarters, increased in the soil seedbank as tillage was reduced, but the higher populations in the soil seedbank did not always result in higher spring seedling populations under zero tillage. In contrast to the seedbank, spring seedling populations of common lambsquarters at Alliance and field pennycress and ball mustard at Hairy Hill were lowest in the zero-tillage system, suggesting that the requirement for herbicides for controlling these weeds in the crop may be least under zero tillage. Both soil seedbank and spring seedling populations of shepherd's-purse at Wainwright and Alliance and of flixweed at Alliance were highest in the zero-tillage system. At Alliance, wild buckwheat seedling emergence in the spring tended to be highest in the minimum-tillage system (one tillage operation prior to seeding). Both soil seedbank and spring seedling populations of green foxtail decreased as tillage was reduced, indicating that green foxtail should become less of a problem under reduced tillage.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Weed Science Society of America
References
Literature Cited
- 24
- Cited by