Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T10:02:18.807Z Has data issue: false hasContentIssue false

Effect of Soil Organic Matter Content and Volumetric Water Content on ‘Tifway 419’ Hybrid Bermudagrass Growth Following Indaziflam Applications

Published online by Cambridge University Press:  20 January 2017

Matthew D. Jeffries*
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Travis W. Gannon
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: [email protected]

Abstract

Indaziflam is a cellulose biosynthesis–inhibiting herbicide for PRE annual weed control in turfgrass systems. Since indaziflam's 2010 U.S. registration, sporadic cases of hybrid bermudagrass injury have been reported; however, causes are not well understood. Field research was conducted from 2013 to 2015 on sandy soil to elucidate the effects of soil organic matter content (SOMC) and soil volumetric water content (SVWC) on plant growth following indaziflam application on established or root-compromised (5 cm long) hybrid bermudagrass. The effect of SOMC was evaluated at two levels, 1.4 (low) and 5.5% (high) w/w at the soil surface (0 to 2.5 cm depth), whereas SVWC was evaluated PRE (2 wk before) and POST (6 wk after) indaziflam application at two levels (low or high). Indaziflam was applied (50 or 100 g ai ha−1) at fall-only, fall-plus-spring, and spring-only timings. Regardless of application timing or SVWC, indaziflam applied at 50 g ha−1 to high SOMC did not cause > 10% visual cover reduction on established or root-compromised hybrid bermudagrass. Indaziflam applied to hybrid bermudagrass on low SOMC exacerbated adverse growth effects, most notably when root systems were compromised before application. Overall, PRE indaziflam application SVWC did not affect hybrid bermudagrass growth. Within low SOMC, low POST indaziflam application SVWC caused less visual hybrid bermudagrass cover reduction than did high POST indaziflam application SVWC, whereas both fall-plus-spring and spring-only application timings caused similarly greater reductions than fall-only indaziflam application. Data from this research will aid turfgrass managers to effectively use indaziflam without adversely affecting hybrid bermudagrass growth.

Indaziflam es un herbicida inhibidor de la biosíntesis de cellulose para el control PRE de malezas anuales en sistemas de céspedes. Desde el registro de indaziflam en Estados Unidos en 2010, se han reportado casos esporádicos de daño en el césped bermuda híbrido, aunque las causas no se conocen bien. Entre 2013 y 2015, se realizó una investigación de campo en un suelo arenoso, para elucidar los efectos del contenido de materia orgánica del suelo (SOMC) y el contenido volumétrico de agua del suelo (SVWC) sobre el crecimiento vegetal después de la aplicación de indaziflam a un césped bermuda híbrido establecido o con un sistema radicular comprometido (5 cm de largo). El efecto de SOMC fue evaluado a dos niveles, 1.4 (bajo) y 5.5% (alto) peso/peso, en la superficie del suelo (0 a 2.5 cm de profundidad), mientras que SVWC fue evaluado antes (2 semanas antes) y después (6 semanas después) de la aplicación de indaziflam a dos niveles (bajo o alto). Indaziflam fue aplicado (50 ó 100 g ai ha−1) solamente en el otoño, el otoño más la primavera, y solamente la primavera. Sin importar el momento de aplicación o SVWC, indaziflam aplicado a 50 g ha−1 a alto SOMC no causó >10% de reducción en la cobertura estimada visualmente en césped bermuda híbrido establecido o con raíces comprometidas. Indaziflam aplicado a césped bermuda híbrido con bajo SOMC exacerbó los efectos adversos en el crecimiento, más notablemente cuando los sistemas radiculares estuvieron comprometidos antes de la aplicación. En general, la aplicación PRE de indaziflam según SVWC no afectó el crecimiento del césped bermuda híbrido. Con bajo SOMC, la aplicación de indaziflam POST con bajo SVWC causó menos reducción en la cobertura estimada visualmente del césped bermuda híbrido que la aplicación POST de indaziflam con alto SVWC, mientras que los momentos de aplicación en el otoño más la primavera y solamente en la primavera causaron mayores reducciones (similares entre ellos) que la aplicación solamente en el otoño. Los datos de esta investigación ayudarán a los profesionales en céspedes para usar efectivamente indaziflam sin afectar adversamente el crecimiento del césped bermuda híbrido.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate editor for this paper: Barry Brecke, University of Florida

References

Literature Cited

Alonso, DG, Koskinen, WC, Oliveira, RS II, Constantin, J, Mislankar, S (2011) Sorption–desorption of indaziflam in selected agricultural soils. J Agric Food Chem 59: 1309613101 Google Scholar
Anonymous (2015) Specticle FLO® herbicide label. Bayer Environmental Science Publication No. 80943407C. Research Triangle Park, NC: Bayer. 15 pGoogle Scholar
Bremer, DJ, Lee, H, Su, K, Keeley, SJ (2011a) Relationships between normalized difference vegetation index and visual quality in cool-season turfgrass, I: variation among species and cultivars. Crop Sci 51: 22122218 Google Scholar
Bremer, DJ, Lee, H, Su, K, Keeley, SJ (2011b) Relationships between normalized difference vegetation index and visual quality in cool-season turfgrass, II: factors affecting NDVI and its component reflectances. Crop Sci 51: 22192227 Google Scholar
Brosnan, JT, Breeden, GK (2012) Application placement affects postemergence smooth crabgrass (Digitaria ischaemum) and annual bluegrass (Poa annua) control with indaziflam. Weed Technol 26: 661665 Google Scholar
Brosnan, JT, Breeden, GK, McCullough, PE, Henry, GM (2012) PRE and POST control of annual bluegrass (Poa annua) with indaziflam. Weed Technol 26: 4853 CrossRefGoogle Scholar
Campillo, C, Prieto, MH, Daza, C, Moñino, MJ, García, MI (2008) Using digital images to characterize canopy coverage and light interception in a processing tomato crop. Hortscience 43: 17801786 Google Scholar
Carmer, SG, Nyquist, WE, Walker, WM (1989) Least significant differences for combined analyses of experiments with two- or three-factor treatment designs. Agron J 81: 665672 Google Scholar
Chang, J, Clay, SA, Clay, DE, Aaron, D, Helder, D, Dalsted, K (2005) Clouds influence precision and accuracy of ground-based spectroradiometers. Commun Soil Sci Plant Anal 36: 17991807 CrossRefGoogle Scholar
Christians, NE (2011) Fundamentals of Turfgrass Management. 4th edn. Chichester, West Sussex, England: Wiley. Pp 5961 Google Scholar
[EPA] U.S. Environmental Protection Agency (2010) Pesticide Fact Sheet–Indaziflam. Washington, DC: U.S. Environmental Protection Agency. 108 pGoogle Scholar
Hansen, PM, Schjoerring, JK (2003) Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ 86: 542553 Google Scholar
[HGCSA] Hawaii Golf Course Superintendents Association (2011) Turf Damage on Fairways: Specticle Herbicide Damage Alert. http://www.hgcsa.org/hawaii-golf/turf-damage-on-fairways/. Accessed October 25, 2015Google Scholar
Hoyle, JA, Yelverton, FH, Gannon, TW (2013) Evaluating multiple rating methods utilized in turfgrass weed science. Weed Technol 27: 362368 Google Scholar
Jeffries, MD, Gannon, TW, Brosnan, JT, Breeden, GK (2016a) Mitigation practices to effectively overseed into indaziflam-treated turfgrass areas. Weed Technol 30: 154162 Google Scholar
Jeffries, MD, Gannon, TW, Ou, L (2016b) Effect of indaziflam applications on ‘Tifway 419’ bermudagrass growth. Agron J 108:950–956 Google Scholar
Jhala, AJ, Ramirez, AHM, Singh, M (2012) Leaching of indaziflam applied at two rates under different rainfall situations in Florida Candler soil. Bull Environ Contam Toxicol 88: 326332 Google Scholar
Johnson, BJ, Duncan, RR (2000) Timing and frequency of ethofumesate plus flurprimidol treatments on bermudagrass (Cynodon spp.) suppression in seashore paspalum (Paspalum vaginatum). Weed Technol 14: 675685 CrossRefGoogle Scholar
Jones, PA, Brosnan, JT, Kopsell, DA, Breeden, GK (2013a) Effect of reed-sedge peat moss on hybrid bermudagrass injury with indaziflam and prodiamine in sand–based root zones. Weed Technol 27: 547551 Google Scholar
Jones, PA, Brosnan, JT, Kopsell, DA, Breeden, GK (2013b) Soil type and rooting depth affect hybrid bermudagrass injury with preemergence herbicides. Crop Sci 53: 660665 Google Scholar
Koger, CH, Dodds, DM, Reynolds, DB (2007) Effects of adjuvants and urea ammonium nitrate on bispyribac efficacy, absorption, and translocation in barnyardgrass (Echinochloa crus-galli), I: efficacy, rainfastness, and soil moisture. Weed Sci 55: 399405 Google Scholar
McCarty, LB (2011) Best Golf Course Management Practices: Construction, Watering, Fertilizing, Cultural Practices, and Pest Management Strategies to Maintain Golf Course Turf with Minimal Environmental Impact. 3rd edn. Upper Saddle River, NJ: Prentice Hall. Pp 42, 6365 Google Scholar
McCarty, LB, Miller, G (2002) Managing Bermudagrass Turf: Selection, Construction, Cultural Practices, and Pest Management Strategies. Chelsea, MI: Ann Arbor. Pp 3–5, 88Google Scholar
McCullough, PE, Yu, J, Gómez de Barreda, D (2013) Efficacy of preemergence herbicides for controlling a dinitroaniline-resistant goosegrass (Eleusine indica) in Georgia. Weed Technol 27: 639644 Google Scholar
Pätzold, S, Brümmer, GW (2003) Influence of microbial activity and soil moisture on herbicide immobilization in soils. J Plant Nutr Soil Sci 166: 336344 Google Scholar
Reed, TV, McCullough, PE (2014) Tolerance of five warm-season turfgrass species to flumioxazin. Weed Technol 28: 340350 Google Scholar
Richardson, MD, Karcher, DE, Purcell, LC (2001) Quantifying turfgrass cover using digital image analysis. Crop Sci 41: 18841888 Google Scholar
Schneider, JG, Haguewood, JB, Song, E, Pan, X, Rutledge, JM, Monke, BJ, Myers, DF, Anderson, SH, Ellersieck, MR, Xiong, X (2015) Indaziflam effect on bermudagrass (Cynodon dactylon L. Pers.) shoot growth and root initiation as influenced by soil texture and organic matter. Crop Sci 55: 429436 CrossRefGoogle Scholar
Steel, RD, Torrie, JH, Dickey, DA (1997) Principles and Procedures of Statistics: A Biometrical Approach. 3rd edn. New York, NY: WCB McGraw-Hill. Pp 353384 Google Scholar
Trenholm, LE, Carrow, RN, Duncan, RR (1999) Relationship of multispectral radiometry data to qualitative data in turfgrass research. Crop Sci 39: 763799 Google Scholar