Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T10:02:05.096Z Has data issue: false hasContentIssue false

Effect of Imazaquin and Chlorimuron Plus Metribuzin on Sicklepod (Cassia obtusifolia) Seed Production and Germination

Published online by Cambridge University Press:  12 June 2017

David R. Shaw
Affiliation:
Dep. Plant Pathol. Weed Sci., Miss. State Univ., Mississippi State, MS 39762
David E. Hydrick
Affiliation:
Dep. Plant Pathol. Weed Sci., Miss. State Univ., Mississippi State, MS 39762

Abstract

Sicklepod seed production and germination were evaluated in density and weed-free period studies without herbicide treatment and after imazaquin or metribuzin plus chlorimuron were applied PRE in soybean. Neither herbicide nor sicklepod density affected sicklepod seed germination, but delaying emergence of sicklepod from 0 wk to 8 wk after soybean emergence reduced subsequent sicklepod seed germination from 92% to 48%. Increasing sicklepod density from two to eight plants per row m reduced sicklepod seeds per plant, but increased sicklepod seeds per m2, regardless of herbicide. Extending the weed-free period from 0 to 8 wk reduced sicklepod seeds per plant and seeds per m2. Imazaquin and chlorimuron plus metribuzin reduced sicklepod seeds per m2 more than 50% at 0 or 2 wk weed-free intervals, compared with nontreated plants at these same intervals.

Type
Research
Copyright
Copyright © 1993 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Adcock, T. E., Krueger, W. A., Rhodes, G. N. Jr., and Ashburn, E. L. 1988. The effects of selected herbicides and cropping systems on sicklepod. Proc. South. Weed Sci. Soc. 41:286.Google Scholar
2. Beyer, E. M. Jr., Duffy, M. J., Hay, J. V., and Schlueter, D. D. 1988. Chapter 3: Sulfonylureas. p. 117190 in Kearney, P. C. and Kaufman, D. D., eds., Herbicides: Chemistry, Degradation, and Mode of Action. Marcel Dekker, Inc., New York.Google Scholar
3. Bridges, D. C. and Walker, R. H. 1985. Influence of weed management and cropping systems on sicklepod seed in soil. Weed Sci. 33:800804.CrossRefGoogle Scholar
4. Buchanan, G. A., Crowley, R. H., Street, J. E., and McGuire, J. A. 1980. Competition of sicklepod (Cassia obtusifolia) and redroot pigweed (Amaranthus retroflexus) with cotton (Gossypium hirsutum). Weed Sci. 28:258262.CrossRefGoogle Scholar
5. Dowler, C. C. 1991. Weed survey—southern states, grass crops subsection. Proc. South. Weed Sci. Soc. 44:426434.Google Scholar
6. Dowler, C. C. 1992. Weed survey—southern states, broadleaf crops subsection. Proc. South. Weed Sci. Soc. 45:392404.Google Scholar
7. Glaze, N. C. and Mullinix, B. G. Jr. 1984. Competitive effects of sicklepod on lima beans. Weed Sci. 32:13.CrossRefGoogle Scholar
8. Hauser, W. E., Buchanan, G. A., Nichols, R. L., and Patterson, R. M. 1982. Effects of Florida beggarweed (Desmodium tortuosum) and sicklepod (Cassia obtusifolia) on peanut (Arachis hypogaea) yield. Weed Sci. 30:602604.Google Scholar
9. Isaacs, M. A., Murdock, E. C., Toler, J. E., and Wallace, S. U. 1989. Effects of late-season herbicide applications on sicklepod (Cassia obtusifolia) seed production and viability. Weed Sci. 37:761765.Google Scholar
10. McWhorter, C. G. and Sciumbato, G. L. 1988. Effects of row spacing, benomyl, and duration of sicklepod (Cassia obtusifolia) interference on soybean (Glycine max) yields. Weed Sci. 36:254259.Google Scholar
11. Ratnayake, S. and Shaw, D. R. 1992. Effects of harvest-aid herbicides on sicklepod (Cassia obtusifolia) seed yield and quality. Weed Technol. 6:985989.CrossRefGoogle Scholar
12. Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.CrossRefGoogle ScholarPubMed
13. Shaw, D. R. 1987. Sicklepod control in soybeans with Canopy, Scepter, and Classic. Miss. Agric. For. Exp. Stn. Res. Rep. 12, No. 20, 4 p.Google Scholar
14. Shaw, D. R. and Coats, G. E. 1988. Herbicides and cultivation for sicklepod, Cassia obtusifolia, control in soybeans, Glycine max . Weed Technol. 2:187190.CrossRefGoogle Scholar
15. Shaw, D. R., Snipes, C. E., and Whatley, L. L. 1986. Chemical control of sicklepod in soybeans. Miss. Agric. For. Exp. Stn. Res. Rep. 11, No. 12, 4 p.Google Scholar
16. Shaw, D. R., Wixson, M. B., and Smith, C. A. 1990. Effect of imazaquin and chlorimuron plus metribuzin on sicklepod (Cassia obtusifoli) interference in soybean (Glycine max). Weed Technol. 5:206216.Google Scholar
17. Street, J. E., Buchanan, G. A., Crowley, R. H., and McGuire, J. A. 1981. Influence of cotton (Gossypium hirsutum) densities on competitiveness of pigweed (Amaranthus spp.) and sicklepod (Cassia obtusifolia). Weed Sci. 29:253256.Google Scholar
18. Teem, D. H., Hoveland, C. S., and Buchanan, G. A. 1980. Sicklepod (Cassia obtusifolia) and coffee senna (Cassia occidentalis) geographic distribution, germination, and emergence. Weed Sci. 28:551556.Google Scholar
19. Thurlow, D. L. and Buchanan, G. A. 1972. Competition of sicklepod with soybeans. Weed Sci. 20:379384.CrossRefGoogle Scholar
20. Walker, R. H., Patterson, M. G., Hauser, E., Isenhour, D. J., Todd, J. W., and Buchanan, G. A. 1984. Effects of insecticide, weed-free period, and row spacing on soybean (Glycine max) and sicklepod (Cassia obtusifolia) growth. Weed Sci. 32:702706.Google Scholar