Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-15T13:26:53.425Z Has data issue: false hasContentIssue false

Effect of Imazapic Application Timing on Texas Peanut (Arachis hypogaea)

Published online by Cambridge University Press:  20 January 2017

Peter A. Dotray*
Affiliation:
Texas Tech University, Lubbock, TX 79409 and Associate Professor and Extension Weed Specialist, Texas Agricultural Extension Service, Lubbock, TX 79401
Todd A. Baughman
Affiliation:
Texas Agricultural Extension Service, Box 2159, Vernon, TX 76384
J. Wayne Keeling
Affiliation:
Texas Agricultural Experiment Station, Lubbock, TX 79401
W. James Grichar
Affiliation:
Texas Agricultural Experiment Station, Box 755, Yoakum, TX 77995
Robert G. Lemon
Affiliation:
Associate Professor and Extension Agronomist, Texas Agricultural Extension Service, College Station, TX 77843
*
Corresponding author's E-mail: [email protected].

Abstract

Field experiments conducted in Texas at six locations from 1996 to 1998 evaluated peanut tolerance to imazapic applied postemergence. Imazapic at 71 g ai/ha was applied weekly from ground cracking to 56 d after ground cracking (DAGC). Visible injury 70 DAGC ranged from 0 to 40%. No reduction in canopy height, canopy width, yield, or grade was observed at harvest following any imazapic treatment.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 1995. Farmerstock Peanuts Inspection Instructions. Washington, DC: U.S. Department of Agriculture.Google Scholar
Anonymous. 1998. Texas Agricultural Statistics. Austin, TX: Texas Department of Agriculture.Google Scholar
Askew, S. D., Wilcut, J. W., and Cranmer, J. R. 1999. Weed management in peanut (Arachis hypogaea) with flumioxazin preemergence. Weed Technol. 13: 594598.Google Scholar
Brecke, B. J. 1991. Purple nutsedge (Cyperus rotundus) control in peanuts. Proc. South. Weed Sci. Soc. 44:139.Google Scholar
Choate, J., Wehtje, G., and Bowen, K. L. 1998. Interaction of paraquat-based weed control with chlorothalonil-based disease control in peanut. J. Prod. Agric. 11: 191195.Google Scholar
Dowler, C. C. 1995. Weed Survey—Southern States. Proc. South. Weed Sci. Soc. 48: 290325.Google Scholar
Grichar, W. J. 1997a. Control of Palmer amaranth (Amaranthus palmeri) in peanut (Arachis hypogaea) with postemergence herbicides. Weed Technol. 11: 739743.Google Scholar
Grichar, W. J. 1997b. Influence of herbicides and timing of application on broadleaf weed control in peanut (Arachis hypogaea). Weed Technol. 11: 708713.Google Scholar
Grichar, W. J. and Colburn, A. E. 1996. Flumioxazin for weed control in Texas peanuts (Arachis hypogaea L.). Peanut Sci. 23: 3036.Google Scholar
Grichar, W. J. and Nester, P. R. 1997. Nutsedge (Cyperus spp.) control in peanut (Arachis hypogaea) with AC 263,222 and imazethapyr. Weed Technol. 11: 714719.Google Scholar
Grichar, W. J., Nester, P. R., and Colburn, A. E. 1992. Nutsedge (Cyperus spp.) control in peanuts (Arachis hypogaea) with imazethapyr. Weed Technol. 6: 396400.Google Scholar
Grichar, W. J., Nester, P. R., and Sestak, D. C. 1997. Peanut (Arachis hypogaea L.) response to imazethapyr as affected by timing of application. Peanut Sci. 24: 1012.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. W., and Herberger, J. P. 1977. The World's Worst Weeds. Distribution and Biology. Honolulu: University Press Hawaii. 609 p.Google Scholar
Johnson, W. C. III and Mullinix, B. G. Jr. 1996. Phytotoxicity of flumetsulam on peanut (Arachis hypogaea). Weed Technol. 10: 481487.Google Scholar
Johnson, W. C. III, Holbrook, C. C., Mullinix, B. G. Jr., and Cardina, J. 1992. Response of eight genetically diverse peanut genotypes to chlorimuron. Peanut Sci. 19: 111115.Google Scholar
Johnson, W. C. III, Chamberlin, J. R., Brenneman, T. B., Todd, J. W., Mullinix, B. G. Jr., and Cardina, J. 1993. Effects of paraquat and alachlor on peanut (Arachis hypogaea) growth, maturity, and yield. Weed Technol. 7: 855859.Google Scholar
Johnson, W. C. III, Wauchope, R. D., and Mullinix, B. G. Jr. 1997. Response of peanut to low rates of MSMA. Weed Sci. 45: 430433.Google Scholar
Knauft, D. A., Colvin, D. L., and Gorbet, D. W. 1990. Effect of paraquat on yield and market grade of peanut (Arachis hypogaea) genotypes. Weed Technol. 4: 866870.Google Scholar
Littlefield, T. A., Colvin, D. L., Brecke, B. J., and McCarty, L. B. 1995a. Time and rate of nicosulfuron application in peanut (Arachis hypogaea). Weed Technol. 9: 3436.Google Scholar
Littlefield, T. A., Colvin, D. L., Brecke, B. J., and McCarty, L. B. 1995b. The effect of nicosulfuron tank-mixes and time of application on Sunrunner peanut (Arachis hypogaea). Weed Technol. 9: 568573.Google Scholar
Littlefield, T. A., Colvin, D. L., Brecke, B. J., and McCarty, L. B. 1997. Effect of nicosulfuron mixtures and time of application on peanut (Arachis hypogaea) cultivars. Weed Technol. 11: 16.Google Scholar
Richburg, J. S. III, Wilcut, J. W., and Eastin, E. F. 1993. Weed control and peanut (Arachis hypogaea L.) response to nicosulfuron and bentazon alone and in mixture. Weed Sci. 41: 615620.Google Scholar
Richburg, J. S. III, Wilcut, J. W., Grichar, W. J., Culbreath, A. C., Kvien, C. K., Branch, W. D., and Wiley, G. 1994. Peanut variety response to AC 263,222 and imazethapyr. Proc. South. Weed Sci. Soc. 47:226.Google Scholar
Richburg, J. S. III, Wilcut, J. W., Culbreath, A. C., and Kvien, C. K. 1995. Response to eight peanut (Arachis hypogaea L.) cultivars to the herbicide AC 263,222. Peanut Sci. 22: 7680.Google Scholar
Webster, T. M., Wilcut, J. W., and Coble, H. D. 1997. Influence of AC 263,222 rate and application method on weed management in peanut (Arachis hypogaea). Weed Technol. 11: 520526.Google Scholar
Wilcut, J. W., Wehtje, G. R., Patterson, M. G., Cole, T. A., and Hicks, T. V. 1989. Absorption, translocation and metabolism of foliar-applied chlorimuron in soybeans (Glycine max), peanuts (Arachis hypogaea), and selected weeds. Weed Sci. 37: 175180.Google Scholar
Wilcut, J. W., Richburg, J. S. III, Eastin, E. F., Wiley, G. R., Walls, F. R. Jr., and Newell, S. 1994a. Imazethapyr and paraquat systems for weed management in peanut (Arachis hypogaea). Weed Sci. 42: 601607.Google Scholar
Wilcut, J. W., York, A. C., and Wehtje, G. R. 1994b. The control and interaction of weeds in peanut (Arachis hypogaea). Rev. Weed. Sci. 6: 177205.Google Scholar
Wilcut, J. W., Richburg, J. S. III, Wiley, G. L., and Walls, F. R. Jr. 1996. Postemergence AC 263,222 systems for weed control in peanut (Arachis hypogaea). Weed Sci. 44: 615621.CrossRefGoogle Scholar
Young, J. H., Person, N. K., Donald, J. O., and Mayfield, W. H. 1982. Harvesting, curing, and energy utilization. In Pattee, H. E. and Young, C. T., eds. Peanut Science and Technology. Yoakum, TX: American Peanut Research and Education Society. pp. 458485.Google Scholar