Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T19:08:04.418Z Has data issue: false hasContentIssue false

Early-Season Palmer Amaranth and Waterhemp Control from Preemergence Programs Utilizing 4-Hydroxyphenylpyruvate Dioxygenase–Inhibiting and Auxinic Herbicides in Soybean

Published online by Cambridge University Press:  20 January 2017

Christopher J. Meyer*
Affiliation:
Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Bryan G. Young
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Lawrence E. Steckel
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996
Kevin W. Bradley
Affiliation:
Division of Plant Sciences, University of Missouri, Columbia, MO 65211
William G. Johnson
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Mark M. Loux
Affiliation:
Ohio State University, Columbus, OH 43210
Vince M. Davis
Affiliation:
Department of Agronomy, University of Wisconsin–Madison, Madison, WI 53706
Greg R. Kruger
Affiliation:
University of Nebraska–Lincoln, North Platte, NE 69101
Mohammad T. Bararpour
Affiliation:
Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Joseph T. Ikley
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Douglas J. Spaunhorst
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Thomas R. Butts
Affiliation:
Department of Agronomy, University of Wisconsin–Madison, Madison, WI 53706
*
Corresponding author's E-mail: [email protected].

Abstract

Palmer amaranth and waterhemp have become increasingly troublesome weeds throughout the United States. Both species are highly adaptable and emerge continuously throughout the summer months, presenting the need for a residual PRE application in soybean. To improve season-long control of Amaranthus spp., 19 PRE treatments were evaluated on glyphosate-resistant Palmer amaranth in 2013 and 2014 at locations in Arkansas, Indiana, Nebraska, Illinois, and Tennessee; and on glyphosate-resistant waterhemp at locations in Illinois, Missouri, and Nebraska. The two Amaranthus species were analyzed separately; data for each species were pooled across site-years, and site-year was included as a random variable in the analyses. The dissipation of weed control throughout the course of the experiments was compared among treatments with the use of regression analysis where percent weed control was described as a function of time (the number of weeks after treatment [WAT]). At the mean (i.e., average) WAT (4.3 and 3.2 WAT for Palmer amaranth and waterhemp, respectively) isoxaflutole + S-metolachlor + metribuzin had the highest predicted control of Palmer amaranth (98%) and waterhemp (99%). Isoxaflutole + S-metolachlor + metribuzin, S-metolachlor + mesotrione, and flumioxazin + pyroxasulfone had a predicted control ≥ 97% and similar model parameter estimates, indicating control declined at similar rates for these treatments. Dicamba and 2,4-D provided some, short-lived residual control of Amaranthus spp. When dicamba was added to metribuzin or S-metolachlor, control increased compared to dicamba alone. Flumioxazin + pyroxasulfone, a currently labeled PRE, performed similarly to treatments containing isoxaflutole or mesotrione. Additional sites of action will provide soybean growers more opportunities to control these weeds and reduce the potential for herbicide resistance.

Amaranthus palmeri y Amaranthus tuberculatus se han convertido en malezas que son cada vez más problemáticas a lo largo de los Estados Unidos. Ambas especies son altamente adaptables y emergen en forma continua durante los meses de verano, lo que hace que sea necesaria la aplicación PRE de herbicidas residuales en soja. Para mejorar el control de Amaranthus spp. durante toda la temporada de crecimiento, se evaluaron 19 tratamientos PRE sobre A. palmeri resistente a glyphosate en 2013 y 2014 en sitios en Arkansas, Indiana, Nebraska, Illinois, y Tennessee; y sobre A. tuberculatus resistente a glyphosate en sitios en Illinois, Missouri, y Nebraska. Las dos especies de Amaranthus fueron analizadas en forma separada; los datos de los dos años fueron combinados para cada especie, y el efecto sitio-año fue incluido como un efecto aleatorio en los análisis. La disipación del control de malezas a lo largo del curso de los experimentos fue comparada entre tratamientos con el uso de análisis de regresión, donde el porcentaje de control de malezas fue descrito en función del tiempo (el número de semanas después del tratamiento [WAT]). En la media (i.e., promedio) WAT (4.3 y 3.2 WAT para A. palmeri y A. tuberculatus, respectivamente), isoxaflutole + S-metolachlor + metribuzin tuvo el mayor control predicho de A. palmeri, (98%) y A. tuberculatus (99%). Isoxaflutole + S-metolachlor + metribuzin, S-metolachlor + mesotrione, y flumioxazin + pyroxasulfone tuvieron un control predicho ≥97% y parámetros estimados del modelo similares, indicando que el control disminuyó a tasas similares entre estos tratamientos. Dicamba y 2,4-D brindaron algo de control residual de poca duración de Amaranthus spp. Cuando dicamba fue agregado a metribuzin o S-metolachlor, el control aumentó al compararse con dicamba solo. Flumioxazin + pyroxasulfone, un herbicida PRE actualmente registrado, mostró un desempeño similar a los tratamientos que contenían isoxaflutole o mesotrione. Sitios de acción adicionales brindarán a los productores de soja más oportunidades para el control de estas malezas y para reducir el potencial de aparición de resistencia a herbicidas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Prashant Jha, Montana State University.

References

Literature Cited

Anonymous (2010) Clarity herbicide product label. BASF Publication No. NVA 2010-04-065-0154. Research Triangle Park, NC: BASF Corporation. 22 pGoogle Scholar
Bradley, RA, Srivastava, SS (1979) Correlation in polynomial regression. Am Statist 33:1114 Google Scholar
Freund, R, Littell, R, Creighton, L (2003) Regression Using JMP. 1st edn. Cary, NC: SAS Institute. Pp 140144 Google Scholar
Heap, I (2015) International Survey of Herbicide Resistant Weeds. http://www.weedscience.com/summary/home.aspx. Accessed February 14, 2015Google Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 Google Scholar
Jha, P, Norsworthy, JK (2009) Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci 57:644651 Google Scholar
Jha, P, Norsworthy, JK, Riley, MB, Bielenberg, DG, Bridges, W Jr. (2009) Acclimation of Palmer amaranth (Amaranthus palmeri) to shading. Weed Sci 56:729734 Google Scholar
Johnson, WG, Chahal, GS, Regeh, DL (2012) Efficacy of various corn herbicides applied preplant incorporated and preemergence. Weed Technol 26:220229 Google Scholar
Keeley, PE, Carter, CH, Thullen, RJ (1987) Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 199204 Google Scholar
Knezevic, SZ, Evans, SP, Mainz, M (2003) Row spacing influences the critical timing for weed removal in soybean (Glycine max). Weed Technol 17:666673 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60(SI 1):3162 Google Scholar
Prince, JM, Shaw, DR, Givens, WA, Owen, MDK, Weller, SC, Young, BG, Wilson, RG, Jordan, DL (2012) Benchmark study: IV. Survey of grower practices for managing glyphosate-resistant weed populations. Weed Technol 26:543548 Google Scholar
Sellers, BA, Smeda, RJ, Johnson, WG, Kendig, JA, Ellersieck, MR (2003) Comparative growth of six Amaranthus species in Missouri. Weed Sci 51:329333 Google Scholar
Sutton, P, Richards, C, Buren, L, Glasgow, L (2002) Activity of mesotrione on resistant weeds in maize. Pest Manag Sci 58:981984 Google Scholar
Thompson, MA, Steckel, LE, Ellis, AT, Mueller, TC (2007) Soybean tolerance to early preplant applications of 2,4-D ester, 2,4-D amine, and dicamba. Weed Technol 21:882885 Google Scholar
Van Acker, RC, Swanton, CJ, Weise, SF (1993) The critical period of weed control in soybean [Glycine max (L.) Merr.]. Weed Sci 41:194200 Google Scholar