Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-15T05:22:57.785Z Has data issue: false hasContentIssue false

Duration of Flumioxazin-Based Weed Control in Container-Grown Nursery Crops

Published online by Cambridge University Press:  20 January 2017

Glenn Wehtje*
Affiliation:
Department of Agronomy and Soils
Charles H. Gilliam
Affiliation:
Department of Horticulture, respectively, Auburn University, Auburn, AL 36849
Stephen C. Marble
Affiliation:
Department of Horticulture, respectively, Auburn University, Auburn, AL 36849
*
Corresponding author's E-mail: [email protected]

Abstract

Flumioxazin is used in nursery production and landscape maintenance industries. In these situations, weed control provided by flumioxazin often lasts longer than that reported in soil. Our objective was to quantify flumioxazin longevity under conditions found in nursery production. Pots were filled with 6 : 1 (v/v) pine bark : sand mixture. This nonsoil media is typical of what is used for nursery crop production. Pots were treated with flumioxazin at either 0.28 or 0.42 kg ai ha−1, and subsequently sown with either hairy bittercress (two winter experiments) or spotted spurge (two summer experiments) at weekly intervals. Weed seed germination, emergence, and seedling establishment in the treated pots was compared with nontreated control and used as a proxy for herbicide activity. Flumioxazin provided approximately 7 wk of complete (100%) hairy bittercress control regardless of rate. However, a rate effect was evident in only one of the two experiments conducted with hairy bittercress. In both experiments with hairy bittercress, marginal and highly variable activity was still evident at 18 wk after treatment. Flumioxazin at 0.28 and 0.42 kg ha−1 provided 2- and 4-wk complete spotted spurge control, respectively. No spotted spurge control was evident after about 8 wk. Subjecting this less-variable data to nonlinear regression revealed that the time required for 50% reduction in flumioxazin activity was approximately 5.5 and 6.6 wk for the two rates, respectively. A column leaching study revealed that flumioxazin activity remained localized near the surface (0 to 4 cm). Therefore the dissipation observed was likely the result of in situ degradation and not displacement. The high organic matter content of the nonsoil media contributes to the observed persistence of flumioxazin activity.

Flumioxazin se usa en las industrias de producción de almácigos y de mantenimiento de paisajes. En estas situaciones el control de malezas brindado por flumioxazin suele durar más que lo reportado en suelo. Nuestro objetivo fue cuantificar la longevidad de flumioxazin bajo las condiciones que se encuentran en la producción de almácigos. Se llenaron macetas con una mezcla 6:1 (v/v) de corteza de pino:arena. Este medio sin suelo es típico en la producción de almácigos de cultivos. Las macetas fueron tratadas con flumioxazin a 0.28 ó 0.48 kg ai ha−1, y subsecuentemente sembradas con Cardamine hirsuta (dos experimentos de invierno) o Chamaesyce maculata (dos experimentos de verano) en intervalos semanales. Flumioxazin brindó aproximadamente 7 semanas de control completo (100%) de C. hirsuta sin importar la dosis. Sin embargo, el efecto de dosis fue evidente solamente en uno de los dos experimentos realizados con esta maleza. En ambos experimentos con C. hirsuta, una actividad marginal y altamente variable fue evidente todavía a 18 semanas después del tratamiento. Flumioxazin a 0.28 y 0.42 kg ha−1 brindó 2 y 4 semanas de control completo de C. maculata, respectivamente. No hubo un control evidente de C. maculata después de 8 semanas. Al someter estos datos menos variables a regresión no-lineal, se reveló que el tiempo requerido para reducir en 50% la actividad de flumioxazin fue aproximadamente 5.5 y 6.6 semanas para las dos dosis, respectivamente. Un estudio usando una columna de lixiviación reveló que la actividad de flumioxazin se mantuvo localizada cerca de la superficie (0 a 4 cm). Así, la disipación observada fue probablemente resultado de la degradación in situ y no del desplazamiento del herbicida. El alto contenido de materia orgánica del medio sin suelo contribuye a la persistencia observada de la actividad de flumioxazin.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Altland, J. E., Gilliam, C. H., and Wehtje, G. 2003. Weed control in field nurseries. Hort. Technol. 13 :917.Google Scholar
Boger, P. and Wakabayashi, K. (eds.). 1999. Peroxidizing Herbicides. New York : Springer-Verlag.CrossRefGoogle Scholar
Briggs, J. A., Whitwell, T., and Riley, M. B. 2011. Barricade (prodiamine) persistence in pine bark : sand substrate. J. Environ. Hort. 29 :7174.Google Scholar
Ferrell, J. A. and Vencill, W. K. 2003. Flumioxazin soil persistence and mineralization in laboratory experiments. J. Agric. Food Chem. 51 :47194721.CrossRefGoogle ScholarPubMed
Funderburk, H. H. and Lawrence, J. M. 1963. A sensitive method for determination of low concentrations of diquat and paraquat. Nature 199 :10111012.CrossRefGoogle Scholar
Lavy, T. L. and Santelmann, P. W. 1986. Herbicide bioassay as a research tool. Pages 201in Camper, N. D., ed. Research Methods in Weed Science. 3rd ed. Lawrence, KS : Weed Science Society of America.Google Scholar
Motulsky, H. and Christopoulos, A. 2004. Fitting models to biological data using nonlinear regression. New York : Oxford University Press.Google Scholar
Murray, P. R., Rosenthal, K. S., and Pfaller, M. A. 2009. Medical Microbiology. Philadelphia : Mosby Elsevier. 947 p.Google Scholar
Pignatello, J. J. and Xing, B. 1995. Mechanism of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30 :111.CrossRefGoogle Scholar
Richardson, R. J. and Zandstra, B. H. 2006. Evaluation of flumioxazin and other herbicide for weed control in gladiolus. Weed Technol. 20 :394398.CrossRefGoogle Scholar
Scalla, R. and Matringe, M. 1994. Inhibition of protoporphyrinogen oxidase as herbicides: diphenyl ethers and related photobleaching herbicides. Rev. Weed Sci. 6 :103132.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9 :218227.CrossRefGoogle Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS. Weed Science Society of America. Pp. 200–202, 231234.Google Scholar
Simmons, L. D. and Derr, J. F. 2007. Pendimethalin movement through pine bark compared to field soil. 2007. Weed Technol. 21 :873876.CrossRefGoogle Scholar
Weber, J. B., Swain, L. R., Strek, H. J., and Sartori, J. L. 1986. Herbicide mobility in soil leaching columns. Pages 189200 in Camper, N. D., ed. Research Methods in Weed Science. Champaign, IL. Southern Weed Science Society.Google Scholar
Wehtje, G. R., Gilliam, C. H., and Hajek, B. F. 1993. Adsorption, desorption and leaching of oxadiazon in container media and soil. HortScience 28 :126128.Google Scholar
Wehtje, G. R., Gilliam, C. H., and Hajek, B. F. 1994. Adsorption, desorption and leaching of oryzalin in container media and soil. HortScience 29 :824.Google Scholar
Wehtje, G., Gilliam, C. H., and Marble, S. C. 2010. Interaction of prodiamine and flumioxazin for nursery weed control. Weed Technol. 24 :504509.Google Scholar
Wu, C. H. and Santelman, P. W. 1975. Comparison of different soil leaching techniques with four herbicides. Weed Sci. 23 :508511.CrossRefGoogle Scholar