Hostname: page-component-599cfd5f84-8nxqw Total loading time: 0 Render date: 2025-01-07T07:35:22.302Z Has data issue: false hasContentIssue false

Dose Response of Glyphosate and Dicamba on Tomato (Lycopersicon esculentum) Injury

Published online by Cambridge University Press:  20 January 2017

Greg R. Kruger
Affiliation:
Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, IN 47907
William G. Johnson
Affiliation:
Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, IN 47907
Douglas J. Doohan
Affiliation:
Department of Horticulture and Crop Science, 1680 Madison Avenue, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
Stephen C. Weller*
Affiliation:
Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: [email protected]

Abstract

Field studies were conducted to determine the response of sublethal glyphosate and dicamba doses to processing tomato flowering loss and marketable yield. Dose–response studies for both herbicides were conducted on four commercial processing tomato lines (two different lines within each study) and plants were sprayed at either the vegetative stage or the early bloom stage. Both glyphosate and dicamba caused higher yield losses when sprayed at the early bloom stage. A 25% yield loss was observed with 8.5 and 7.5 g ae ha−1 for glyphosate and dicamba, respectively, at the early bloom stage and 43.9 and 11.9 g ae ha−1 for glyphosate and dicamba, respectively, at the early vegetative stage. Overall, these tomato cultivars were more sensitive to dicamba than to glyphosate. We conclude that glyphosate and dicamba drift could have serious implications on tomato yields especially if the drift occurs during flowering.

Se realizaron estudios de campo para determinar la respuesta de dosis sub-letales de glifosato y dicamba para evaluar la pérdida de flores en tomate y su rendimiento comercial. Estudios de respuesta a dosis para ambos herbicidas se realizaron en cuatro líneas de procesamiento comercial de tomate (dos diferentes líneas para cada estudio) en plantas asperjadas ya sea en estado vegetativo o en la etapa temprana de floración. Tanto glifosato como dicamba causaron mayores pérdidas en el rendimiento cuando se asperjaron en la etapa temprana de floración. Un 25% de la pérdida en el rendimiento se observó con 8.5 y 7.5 g ea ha−1 de glifosato y dicamba, respectivamente, en la etapa temprana de floración y 43.9 y 11.9 g ea ha−1 de glifosato y dicamba, respectivamente, en la etapa vegetativa temprana. En general, estos cultivares de tomate fueron más sensibles al dicamba que al glifosato. Concluimos que el acarreo aéreo de glifosato y dicamba, podría tener serias implicaciones en el rendimiento del tomate, especialmente si este acarreo ocurre durante la floración.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Behrens, M. R., Mutlu, N., Chakraborty, S., Dumitru, R., Jiang, W. Z., LaVallee, B. J., Herman, P. L., Clemente, T. E., and Weeks, D. P. 2007. Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:11851188.CrossRefGoogle ScholarPubMed
Behrens, R. and Lueschen, W. E. 1979. Dicamba volatility. Weed Sci. 27:486493.Google Scholar
Fagliari, J. R., de Oliveira, R. S. Jr., and Constantin, J. 2005. Impact of sublethal doses of 2,4-D, simulating drift, on tomato yield. J. Environ. Sci. Health B40:201206.Google Scholar
Gilreath, J. P., Chase, C. A., and Locascio, S. J. 2001. Crop injury from sublethal rates of herbicide. I. Tomato. Hort. Sci. 36:669673.Google Scholar
Jordan, T. N. and Romanowski, R. R. 1974. Comparison of dicamba and 2,4-D injury to field-grown tomatoes. Hort. Sci. 9:7475.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technol. 21:840848.Google Scholar
Lovelace, M. L., Hoagland, R. E., Talbert, R. E., and Scherder, E. F. 2009. Influence of simulated quinclorac drift on the accumulation and movement of herbicide in tomato (Lycopersicon esculentum) plants. J. Agric. Food Chem. 57:63496355.Google Scholar
Lovelace, M. L., Talbert, R. E., Scherder, E. F., and Hoagland, R. E. 2007. Effects of multiple applications of simulated quinclorac drift rates on tomato. Weed Sci. 55:169177.Google Scholar
Ovidi, E., Gambellini, G., Taddei, A. R., Cai, G., Del Casino, C., Ceci, M., Rondini, S., and Tiezzi, A. 2001. Herbicides and the microtubular apparatus of Nicotiana tabacum pollen tube: immunofluorescence and immunogold labelling studies. Toxicol. in Vitro 15:143151.Google Scholar
Romanowski, R. R. 1980. Simulated drift studies with herbicides on field-grown tomato. Hort. Sci. 15:793794.Google Scholar
USDA, Economics, Statistics and Market Information System. 2008. U.S. Tomato Statistics (92010). http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1210.Google Scholar