Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T14:26:01.306Z Has data issue: false hasContentIssue false

Differential Response of Four Trifolium Species to Common Broadleaf Herbicides: Implications for Mixed Grass-Legume Swards

Published online by Cambridge University Press:  20 January 2017

James D. McCurdy*
Affiliation:
Department of Agronomy and Soils, Auburn University, Auburn, AL 36849
J. Scott McElroy
Affiliation:
Department of Agronomy and Soils, Auburn University, Auburn, AL 36849
Michael L. Flessner
Affiliation:
Department of Agronomy and Soils, Auburn University, Auburn, AL 36849
*
Corresponding author's E-mail: [email protected]

Abstract

Clovers are commonly included as utility plants within mixed grass swards, such as pastures and roadside right-of-ways. As such, they provide supplemental nitrogen, quality forage, and insect habitat. Yet weed control within mixed swards is often hampered by the lack of selective herbicides that are tolerated by clovers. Differential tolerance of legumes to common row-crop and pasture herbicides has previously been reported, yet little information is available that is specific to clover species. Herbicide injury of clover is often inconsistent, hypothetically due to differential species tolerance. Field and greenhouse experiments were conducted with the objective of testing differential tolerance amongst four clover species. Our experiments suggest varying tolerances amongst clover species and common broadleaf herbicides. Only imazaquin control differed due to species; however, treatment by clover interactions were further demonstrated due to variable reductions in clover height. Imazaquin, 2,4-D, 2,4-DB, and triclopyr height reductions differed due to clover species. Differential clover response to herbicide treatment should be an important consideration when managing mixed grass–clover swards and should be accounted for in future research. On a more practical level, our experiments demonstrate a range of herbicides that effectively control clover species, including atrazine, dicamba, clopyralid, 2,4-D, triclopyr, metsulfuron, and trifloxysulfuron. However, results suggest that 2,4-DB, imazethapyr, and bentazon are candidate herbicides for weed control in scenarios in which clover is a desirable crop.

Los tréboles son comúnmente incluidos como plantas útiles dentro de zonas con coberturas mixtas de zacates, tales como pastizales y bordes de caminos. De tal forma, que brinden nitrógeno suplementario, calidad de forraje y hábitat para insectos. Sin embargo, dentro de esas zonas de cobertura mixta, el control de malezas se ve frecuentemente obstaculizado por la ausencia de herbicidas selectivos que sean tolerados por los tréboles. La tolerancia diferencial de leguminosas a herbicidas para cultivos extensivos y pasturas ha sido reportada anteriormente, aunque hay poca información disponible que sea específica para especies de trébol. El daño causado por los herbicidas es usualmente inconsistente, hipotéticamente debido a las diferencias en tolerancia entre especies. Se realizaron experimentos de campo y de invernadero con el objetivo de evaluar la tolerancia diferencial entre cuatro especies de trébol. Nuestros experimentos sugieren que existe variación entre especies de trébol en la tolerancia a herbicidas de hoja ancha comunes. Solamente el control con imazaquin difirió debido a las especies, aunque interacciones entre tratamiento y especie de trébol fueron demostradas debido a reducciones variables en la altura del trébol. Las reducciones en altura, producto del efecto de imazaquin, 2,4-D, 2,4-DB y triclopyr, variaron según la especie de trébol. La respuesta diferencial de los tréboles a los tratamientos con herbicidas debería ser una consideración importante cuando se manejan áreas con coberturas mixtas de zacates y tréboles y debería ser incluida en investigaciones futuras. A un nivel más práctico, nuestros experimentos muestran un rango de herbicidas que efectivamente controlan especies de trébol, incluyendo atrazine, dicamba, clopyralid, 2,4-D, triclopyr, metsulfuron, and trifloxysulfuron. Sin embargo, los resultados sugieren que 2,4-DB, imazethapyr y bentazon son herbicidas candidatos para el control de malezas en escenarios en los cuales el trébol es un cultivo deseable.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abraham, C. M., Held, D. W., and Wheeler, C. 2010. Seasonal and diurnal activity of Larra bicolor (Hymenoptera: Crabronidae) and potential ornamental plants as nectar sources. Appl. Turf. Sci. DOI: .Google Scholar
Beran, D. D., Masters, R. A., and Gaussoin, R. E. 1999. Grassland legume establishment with imazethapyr and imazapic. Agron. J. 91 :592596.Google Scholar
Bowran, D. G. 1993. Differential response of four legume species to broad-leaf herbicides. Pages 181185 in Proceedings of the Tenth Australian Weeds Conference, Bribane, Queensland, Australia : Weed Society of Quensland.Google Scholar
Carlisle, R. J., Watson, V. H., and Cole, A. W. 1980. Canopy and chemistry of pasture weeds. Weed Sci. 28 :139142.Google Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences for combined analysis of experiments with two- or three-factor treatment designs. Agron. J. 81 :665672.Google Scholar
Ceballos, R., Palma, G., Brevis, H., Ortega, F., and Quiroz, A. 2004. Effect of five postemergence herbicides on red clover shoot and root growth in greenhouse studies. Phytoprotection 85 :153160.Google Scholar
Clark, S. A. and Mahanty, H. K. 1991. Influence of herbicides on growth and nodulation of white clover, Trifolium repens . Soil Biol. Biochem. 23 :725730.Google Scholar
Conrad, J. D. and Stritzke, J. F. 1980. Response of arrowleaf clover to postemergence herbicides. Agron. J. 72 :670672.Google Scholar
DiTomaso, J. M. 2000. Invasive weeds in rangelands: species, impacts, and management. Weed Sci. 48 :255265.Google Scholar
Ellison, N. W., Liston, A., Steiner, J. J., Williams, W. M., and Taylor, N. L. 2006. Molecular phylogenetics of the clover genus Trifolium (Leguminosae). Mol. Phylogenet. Evol. 39 :688705.Google Scholar
Elliot, J. G. 2006. The reaction of Trifolium repens (L.) in grassland to 2, 4–D, MCPA and mixtures of 2, 4-D and MCPB. Weed Res. 1 :184195.Google Scholar
Evers, G. W., Grichar, W. J., Pohler, C. L., and Schubert, A. M. 1993. Tolerance of three annual forage legumes to selected postemergence herbicides. Weed Technol. 7 :735739.Google Scholar
Fletcher, W. W. and Raymond, J. C. 1956. Toxicity and breakdown of “hormone” herbicides. Nature. 178 :151152.Google Scholar
Hager, A. G., Wax, L. M., Bollero, G. A., and Stoller, E. W. 2003. Influence of diphenylether herbicide application rate and timing on common waterhemp (Amaranthus rudis) control in soybean (Glycine max). Weed Technol. 17 :1420.Google Scholar
Hawton, D., Johnson, I.D.G., Loch, D. S., Harvey, G. L., Marley, J.M.T., Hazard, W.H.L., Bibo, J., and Walker, S. R. 1990. A guide to the susceptibility of some tropical crop and pasture weeds and the tolerance of some crop legumes to several herbicides. Trop. Pest Manage. 36 :147150.Google Scholar
Hoveland, C. S. 1989. Legume persistence under grazing in stressful environments in the USA. Pages 375385 in Marten, G. C. et al., eds. Persistence of Forage Legumes. Madison, WI : ASA, CSSA, and SSSA.Google Scholar
International Survey of Herbicide Resistant Weeds. 2012. ALS Inhibitors (B/2) Resistant Weeds. http://www.weedscience.org. Accessed: June 15, 2012.Google Scholar
Kent, L. M., Barrentine, W. L., and Wills, G. D. 1988. Response of twenty determinate soybean (Glycine max) cultivars to imazaquin. Proc. South. Weed Sci. Soc. 41 :50.Google Scholar
Ledgard, S. F. and Steele, K. W. 1992. Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 141 :137153.Google Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. 2006. SAS® for Mixed Models. 2nd ed. Cary, NC : SAS Institute Inc. Pp. 1556.Google Scholar
MacRae, A. W., Mitchem, W. E., Monks, D. W., and Parker, M. L. 2005. White clover (Trifolium repens) control and flower head suppression in apple orchards. Weed Technol. 19 :219223.Google Scholar
Marten, G. C. and Andersen, R. N. 1975. Forage nutritive value and palatability of 12 common annual weeds. Crop Sci. 15 :821827.Google Scholar
McNeill, A. M. and Wood, M. 1990. 15N estimates of nitrogen fixation by white clover (Trifolium repens L.) growing in a mixture with ryegrass (Lolium perenne L.). Plant Soil 128 :265273.Google Scholar
Mulholland, J. G., Dear, B. S., Scott, G. B., and Kaiser, A. G. 1989. Effect of broad-leaf herbicides on production of annual legumes. Page 452 in Proceedings of the 5th Australia Agronomy Conference.Google Scholar
Neal, J. C. 1990. Non-phenoxy herbicides for perennial broadleaf weed control in cool-season turf. Weed Technol. 4 :555559.Google Scholar
Neal, J. C. and Mascianica, M. R. 1988. Phenoxy and non-phenoxy herbicides for controlling dandelion, plantain, clover, and veronica. Proc. Northeast. Weed Sci. Soc 42 :183184.Google Scholar
Plants Database. 2012. National Plant Data Center, NRCS, USDA. http://plants.usda.gov. Accessed May 15, 2012.Google Scholar
Rajeev, K. V., Close, T. J., Singh, N. K., Hosington, D. A., and Cook, D. R. 2009. Orphan legume crops enter the genomics era. Curr. Opin. Plant Biol. 12 :202210.Google Scholar
Rao, S. C., Northup, B. K., Phillips, W. A., and Mayeux, H. S. 2007. Interseeding novel cool-season annual legumes to improve bermudagrass paddocks. Crop Sci. 47 :168173.Google Scholar
Roberts, R. D. and Bradshaw, A. D. 1985. The development of a hydraulic seeding technique for unstable sand slopes II. Field Evaluation. Appl. Ecol. 22 :979994.Google Scholar
Rogers, M. E. and Potter, D. A. 2004. Potential for sugar sprays and flowering plants to increase parasitism of white grubs by tiphiid wasps (Hymenoptera: Tiphiidae). Environ. Entomol. 33 :520527.Google Scholar
Seefeldt, S. S., Stephens, J.M.C., Verkaaik, M. L., and Rahman, A. 2005. Quantifying the impact of a weed in a perennial ryegrass-white clover pasture. Weed Sci. 53 :113120.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. Lawrence, KS : Weed Science Society of America. 458 p.Google Scholar
Sincik, M. and Acikgoz, E. 2007. Effects of white clover inclusion on turf characteristics, nitrogen fixation, and nitrogen transfer from white clover to grass species in turf mixtures. Comm. Soil Sci. Plant Anal. 38 :18611877.Google Scholar
Smith, A. E. and Powell, J. D. 1979. Herbicides for weed control during establishment of arrowleaf clover. Athens, Georgia : University of Georgia, Research Report. P. 324.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50 :700712.Google Scholar
Vengris, J., Drake, M., Colby, W. G., and Bart, J. 1953. Chemical composition of weeds and accompanying crop plants. Agron. J. 45 :213218.Google Scholar
Wain, R. L. and Wightman, F. 1954. The growth-regulating activity of certain ω-substituted alkyl carboxylic acids in relation to their b-oxidation within the plant. Proc. Nat. Acad. Sci. USA 142 :525536.Google Scholar
Weed Science Society of America. 2012. Common/Scientific Names. http://wssa.net/Weeds/ID/WeedNames/namesearch.php. Accessed May 15, 2012.Google Scholar
Whitehead, D. C. 1995. Grassland Nitrogen. Wallingford : CAB International. P. 397.Google Scholar
Willis, J. B., Askew, S. D., and McElroy, J. S. 2007. Improved white clover control with mesotrione by tank-mixing bromoxynil, carfentrazone, and simazine. Weed Technol. 21 :739743.Google Scholar
Young, R. R., Morthorpe, K. J., Croft, P. H., and Nico, H. 1992. Differential tolerance of annual medics, Nungarin subterranean clover and hedge mustard to broadleaf herbicides. Aust. J. Exp. Agric. 32 :4957.Google Scholar