Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-04T18:34:39.340Z Has data issue: false hasContentIssue false

Correlation of Chemical Analysis of Residual Levels of Aminocyclopyrachlor in Soil to Biological Responses of Alfalfa, Cotton, Soybean, and Sunflower

Published online by Cambridge University Press:  20 January 2017

Stephen D. Strachan*
Affiliation:
DuPont Stine-Haskell Research Center, 1090 Elkton Road, Newark, DE 19711
Sergio C. Nanita
Affiliation:
DuPont Stine-Haskell Research Center, 1090 Elkton Road, Newark, DE 19711
Marc Ruggiero
Affiliation:
DuPont Stine-Haskell Research Center, 1090 Elkton Road, Newark, DE 19711
Mark S. Casini
Affiliation:
DuPont Stine-Haskell Research Center, 1090 Elkton Road, Newark, DE 19711
Kathleen M. Heldreth
Affiliation:
DuPont Stine-Haskell Research Center, 1090 Elkton Road, Newark, DE 19711
Larry H. Hageman
Affiliation:
13239 Illinois Route 38, Rochelle, IL 61068
Helen A. Flanigan
Affiliation:
1477 S. Franklin Rd., Greenwood, IN 46143
Nancy M. Ferry
Affiliation:
DuPont Stine-Haskell Research Center, 1090 Elkton Road, Newark, DE 19711
Anne M. Pentz
Affiliation:
DuPont Stine-Haskell Research Center, 1090 Elkton Road, Newark, DE 19711
*
Corresponding author's E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Researchers, product registration personnel, and growers desire the ability to chemically detect residual amounts of herbicides in soil at concentrations below those necessary to cause phytotoxicity to sensitive nontarget or rotational crop plants. Alfalfa, cotton, soybean, and sunflower, crops sensitive to low concentrations of aminocyclopyrachlor in soil, were planted at field test sites approximately 1 yr after aminocyclopyrachlor methyl was applied. Soil samples were collected when rotational crops were planted and were analyzed for aminocyclopyrachlor by a method based on high performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS), with a limit of detection (LOD) of 0.1 part per billion (ppb) (soil oven-dry weight basis). Loglogistic dose–response analysis correlated visual phytotoxic plant responses to residual concentrations of aminocyclopyrachlor in the soil. Concentrations of aminocyclopyrachlor estimated to cause 25% phytotoxicity to alfalfa, cotton, soybean, and sunflower were 5.4, 3.2, 2.0, and 6.2 ppb, respectively, 20 to 60 times greater than the LOD of the analytical method available for soil analysis. Results from these studies suggest this HPLC/MS/MS method of analysis can be used to indicate potential risk and severity of plant response for alfalfa, cotton, soybean, and sunflower, and for other plant species once dose–response curves for these additional species are established. This chemical assay may be particularly important if researchers desire to study the concentration, movement, and dissipation of aminocyclopyrachlor in soil or as part of a forensic investigation to better understand the cause of an unanticipated or undesirable plant response.

Investigadores, personal de registro de productos y agricultores, desean tener la habilidad para detectar químicamente cantidades residuales de herbicida en el suelo a concentraciones por debajo de aquellas necesarias para causar fitotoxicidad a las plantas sensibles que no se tratan de controlar o los cultivos de rotación. Cultivos sensibles a bajas concentraciones de aminocyclopyrachlor en el suelo, como la alfalfa, el algodón, la soya y el girasol, se sembraron en las parcelas en estudio, aproximadamente un año después que el aminocyclopyrachlor metil fuera aplicado. Se tomaron muestras de suelo cuando los cultivos de rotación se sembraron y se analizaron para detectar residuos de aminocyclopyrachlor con un método de cromatografía líquida de alta eficiencia/espectrometría de masa en tándem (HPLC/MS/MS), con un límite de detección de 0.1 partes por billón (ppb) (basado en el peso del suelo secado al horno). Un análisis log-logístico de dosis-respuesta correlacionó las respuestas visibles de fitotoxicidad observadas en las plantas a las concentraciones residuales de aminocyclopyrachlor en el suelo. Las concentraciones del herbicida que se estiman causaron 25% de fitotoxicidad a alfalfa, algodón, soya y girasol, fueron 5.4, 3.2, 2.0 y 6.2 ppb, respectivamente, y que son niveles de 20 a 60 veces mayores que el límite de detección del método analítico disponible para el análisis del suelo. Los resultados de estas investigaciones sugieren que el método de análisis HPLC/MS/MS puede usarse para indicar el riesgo potencial y la severidad de la respuesta de las plantas de alfalfa, algodón, soya y girasol. Para otras especies podría usarse luego que se establezcan curvas de dosis-respuesta para ellas. Esta prueba química podría ser particularmente importante si los investigadores desean estudiar la concentración, movimiento y disipación de aminocyclopyrachlor en el suelo, o como parte de una investigación forense para entender mejor la causa de una respuesta no anticipada o indeseable de unas plantas.

Type
Weed Management—Other Crops/Areas
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

References

Literature Cited

Andersen, S. M., Clay, S. A., Wrage, L. J., and Matthees, D. 2004. Soybean foliage residues of dicamba and 2,4-D and correlation to application rates and yield. Agron. J. 96:750760.Google Scholar
Claus, J., Turner, R., Armel, G., and Holliday, M. 2008. DuPont aminocyclopyrachlor (proposed common name) (DPX-MAT28/KJM44) herbicide for use in turf, IWC, bare-ground, and brush markets. Proc. 5th Int. Weed Sci. Congr 1:654.Google Scholar
Clay, D. V. 1993. Herbicide residues in soils and plants and their bioassay. Pages 153171. In Streibig, J. C. and Kudsk, P. eds. Herbicide Bioassays. Boca Raton, FL: CRC Press.Google Scholar
Eberle, D. O. and Gerber, H. R. 1976. Comparative studies of instrumental and bioassay methods for the analysis of herbicide residues. Arch. Environ. Contam. Toxicol 4:101118.Google Scholar
Fauci, M., Bezdicek, D. F., Caldwell, D., and Finch, R. 2002. Development of plant bioassay to detect herbicide contamination of compost at or below practical analytical detection limits. Bull. Environ. Contam. Toxicol 68:7985.Google Scholar
Finney, D. J. ed. 1971. Probit Analysis. 3rd ed. London: Cambridge University Press. 333 p.Google Scholar
McCullagh, P. and Nelder, J. A. eds. 1989. Generalized Linear Models. 2nd ed. London: Chapman and Hall. 511 p.Google Scholar
Nanita, S. C., Pentz, A. M., Grant, J., Vogl, E., Devine, T. J., and Henze, R. M. 2009. Mass spectrometric assessment and analytical methods for quantitation of the new herbicide aminocyclopyrachlor and its methyl analogue in soil and water. Anal. Chem 81:797808.Google Scholar
Ross, M. A. and Lembi, C. A. eds. 1985. Applied Weed Science. Minneapolis, MN: Burgess Publishing Co. Pp. 157162.Google Scholar
Sciumbato, A. S., Chandler, J. M., Senseman, S. S., Bovey, R. W., and Smith, K. L. 2004. Determining exposure to auxin-like herbicides. I. Quantifying injury to cotton and soybean. Weed Technol 18:11251134.Google Scholar
Turner, R. G., Claus, J. S., Holliday, M. J., and Hidalgo, E. 2008. Technical introduction of DuPont's new vegetation management herbicide aminocyclopyrachlor. North Central Weed Sci. Soc. Proc 63:201.Google Scholar