Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T03:07:52.888Z Has data issue: false hasContentIssue false

Corn Tolerance to Weed Interference Varies with Preceding Crop

Published online by Cambridge University Press:  20 January 2017

Randy L. Anderson*
Affiliation:
USDA Agricultural Research Service, 2923 Medary Avenue, Brookings, SD 57006
*
Corresponding author's E-mail: [email protected]

Abstract

Crop diversity may improve tolerance to weed interference and reduce the need for herbicides. This experiment measured weed interference in corn as affected by the preceding crop in two studies. The first study, based on interference of the resident weed community, compared dry pea, soybean, canola, and spring wheat for effect on corn tolerance to weeds. Prominent weeds were green and yellow foxtail. The second study examined corn tolerance to a uniform infestation of foxtail millet as affected by dry pea, soybean, spring wheat, and corn as preceding crops. Each plot was split into weed-free and weed-infested subplots in both studies. Corn was most tolerant to weed interference following dry pea; compared with soybean, dry pea improved corn tolerance more than twofold. Corn also yielded the highest in weed-free conditions following dry pea; compared across 4 yr, corn yielded 7 to 23% more following dry pea than following either soybean or spring wheat. Crop diversity has helped producers reduce herbicide inputs in the Great Plains and may provide an additional benefit of reducing weed impact on crop yield.

La diversidad de cultivos podría mejorar la tolerancia a la interferencia de malezas y reducir la necesidad del uso de herbicidas. Este experimento midió en dos estudios la interferencia de malezas en maíz y de cómo fue afectada por el cultivo precedente. El primer estudio, basado en la interferencia de la comunidad nativa de malezas, comparó el efecto que tuvieron el guisante seco, soya, canola y trigo de primavera en la tolerancia del maíz a las malezas. Las malezas más abundantes fueron Setaria viridis y Setaria glauca. El segundo estudio examinó la tolerancia del maíz a una infestación uniforme de Setaria italica y cómo fue afectada por el guisante seco, soya, trigo de primavera y maíz como cultivos precedentes. Cada parcela se dividió en sub-parcelas libres e infestadas de maleza en ambos estudios. Sembrado después del guisante seco, el maíz fue más tolerante a la interferencia de la maleza. En comparación con la soya, el guisante seco mejoró la tolerancia del maíz más del doble. El maíz también tuvo el mayor rendimiento en condiciones libres de maleza, seguido por el guisante seco. Promediando los cuatro años, el maíz rindió de 7 a 23% más al ser sembrado después del guisante seco que después de la soya o del trigo de primavera. La diversidad de cultivos ha ayudado a los productores a reducir las aplicaciones de herbicidas en las Grandes Planicies y puede proporcionar un beneficio adicional al reducir el impacto de las malezas en el rendimiento del cultivo.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, R. L. 2004. Impact of subsurface tillage on weed dynamics in the central Great Plains. Weed Technol. 18:186192.CrossRefGoogle Scholar
Anderson, R. L. 2005a. A multi-tactic approach to manage weed population dynamics in crop rotations. Agron. J. 97:15791583.Google Scholar
Anderson, R. L. 2005b. Are some crops synergistic to following crops? Agron. J. 97:710.Google Scholar
Anderson, R. L. 2008. Diversity and no-till: keys for pest management in the U.S. Great Plains. Weed Sci. 56:141145.CrossRefGoogle Scholar
Anderson, R. L. 2009. Impact of preceding crop and cultural practices on rye growth in winter wheat. Weed Technol. 23:564568.Google Scholar
Anderson, R. L. 2011. Synergism: a rotational effect of improved growth efficiency. Adv. Agron. 112:205226.Google Scholar
Bastianns, L., Kropff, M. J., Goudriaan, J., and van Laar, H. H. 2000. Design of weed management systems with a reduced reliance on herbicides poses new challenges and prerequisites for modeling crop-weed interactions. Field Crops Res. 67:161179.Google Scholar
Beck, D. L. 2010. Successful No-Till for the Central and Northern Plains. Dakota Lakes Research Farm, http://www.dakotalakes.com. Accessed: November 12, 2010.Google Scholar
Hobbs, P. R. 2007. Conservation agriculture: what it is and why it is important for future sustainable food production? J. Agric. Sci. 145:127137.Google Scholar
Katsvairo, T., Cox, W. J., and van Es, H. 2002. Tillage and rotation effects on soil physical characteristics. Agron. J. 94:299304.Google Scholar
Kirkegaard, J., Christen, O., Krupinsky, J., and Layell, D. 2008. Break crops benefits in temperate wheat production. Field Crop Res. 107:185195.CrossRefGoogle Scholar
Krupinsky, J. M., Bailey, K. L., McMullen, M. P., Gossen, B. D., and Turkington, T. K. 2002. Managing plant disease risk with diversified cropping systems. Agron. J. 94:198209.Google Scholar
Kumar, V., Mills, D. J., Anderson, J. D., and Mattoo, A. K. 2004. An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. Proc. Natl. Acad. Sci. U. S. A. 101:1053510540.Google Scholar
Lewis, W. J., van Lenteren, J. C., Phatak, S. C., and Tumlinson, J. H. III. 1997. A total system approach to sustainable pest management. Proc. Natl. Acad. Sci. U. S. A. 94:1224312248.Google Scholar
Lupwayi, N. Z., Clayton, G. W., Hanson, K. G., Rice, W. A., and Biederbeck, V. O. 2004. Endophytic rhizobia in barley, wheat and canola roots. Can. J. Plant Sci. 84:3745.Google Scholar
Riggs, P. J., Chelius, M. K., Iniquez, A. L., Kaeppler, S. M., and Triplett, E. W. 2001. Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust. J. Plant Physiol. 28:829–236.836.Google Scholar
Sooby, J., Landeck, J., and Lipson, M. 2007. National Organic Research Agenda. Organic Farming Research Foundation, http://www.ofrf.org. Accessed: April 14, 2011.Google Scholar
Sturz, A. V. and Chrisite, B. R. 2003. Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res. 72:107123.Google Scholar
Swan, J. B., Higgs, R. L., Bailey, T. B., Wollenhaupt, N. C., Paulson, W. H., and Peterson, A. E. 1994. Surface residue and in-row treatment effects on long-term no-tillage continuous corn. Agron. J. 86:711718.Google Scholar
Vereijken, R. 2002. Transition to multifunctional land use and agriculture. Neth. J. Agric. Sci. 50:171179.Google Scholar
Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571586.Google Scholar
Vetsch, J. A. and Randall, G. W. 2000. Enhancing no-tillage systems for corn with starter fertilizer, row cleaners, and nitrogen placement factors. Agron. J. 92:309315.Google Scholar
Vyn, T. J. and Hooker, D. C. 2002. Assessment of multiple- and single-factor stress impacts on corn. Field Crops Res. 75:123137.Google Scholar
Zhang, J., Hamill, A. S., and Weaver, S. E. 1996. Corn yields after 10 years of different cropping sequences and weed management practices. Can. J. Plant Sci. 76:795797.CrossRefGoogle Scholar