Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T03:20:24.875Z Has data issue: false hasContentIssue false

Controlling Grass Weeds on Hard Surfaces: Effect of Time Intervals between Flame Treatments

Published online by Cambridge University Press:  20 January 2017

Anne M. Rask*
Affiliation:
Forest and Landscape, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 23, DK-1923 Frederiksberg C, Denmark
Palle Kristoffersen
Affiliation:
Forest and Landscape, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 23, DK-1923 Frederiksberg C, Denmark
Christian Andreasen
Affiliation:
Department of Agriculture and Ecology, Højbakkegård Allé13, DK- 2630 Taastrup, Denmark
*
Corresponding author's E-mail: [email protected]

Abstract

An experiment was conducted on a specially designed hard surface to study the impact of time interval between flaming treatments on the regrowth and flower production of two grass weeds. The goal of this experiment was to optimize the control of annual bluegrass and perennial ryegrass, both species that are very difficult to control without herbicides. Aboveground biomass from 72 plants per treatment was harvested and dry weights were recorded at regular intervals to investigate how the plants responded to flaming. Regrowth of the grasses was measured by harvesting aboveground biomass 2 wk after the second flaming treatments that were implemented at different time intervals. Flaming treatments decreased plant biomass of both species and also the ratio of flowering annual bluegrass plants. However, few plants were killed. The first flaming treatment affected aboveground biomass more than the second flaming treatment. A treatment interval of 7 d provided the greatest reduction in regrowth of perennial ryegrass, whereas the effect of treatment interval varied between the first and second repetitions of this experiment for annual bluegrass. In general, short treatment intervals (3 d) should be avoided, as they did not increase the reduction of aboveground biomass compared with the 7-d treatment interval. Knowledge on the regrowth of grass weeds after flaming treatments provided by this study can help improve recommendations given to road keepers and park managers for management on these weeds.

Se realizó un experimento en una superficie dura especialmente diseñada para estudiar el impacto de los intervalos de tiempo entre los tratamientos de quema con lanzallamas en la regeneración y producción de flores de dos malezas gramíneas. El objetivo de este experimento fue optimizar el control de Poa annua y Lolium perenne, ambas especies muy difíciles de controlar sin herbicidas. La biomasa aérea de 72 plantas por tratamiento se cosechó y los pesos secos se registraron en intervalos regulares para investigar cómo las plantas respondían a la quema. La regeneración de las malezas fue medida a través de la cosecha de la biomasa aérea dos semanas después del segundo tratamiento con fuego, que a su vez fueron realizados en diferentes intervalos de tiempo. Los tratamientos con fuego disminuyeron la biomasa de ambas especies y también el índice de floración de las plantas de P. annua. Sin embargo, solamente murieron unas cuantas plantas. El primer tratamiento afectó la biomasa aérea más que el segundo tratamiento. Un intervalo entre tratamientos de siete días proporcionó la mayor reducción de regeneración de L. perenne, mientras que el efecto de la duración del intervalo varió entre la primera y segunda repetición de este experimento para P. annua. En general, los intervalos cortos entre tratamientos (tres días) deben de evitarse, debido a que no mejoran la reducción de la biomasa aérea en comparación con el intervalo de 7 días. Los conocimientos obtenidos en este estudio acerca de la regeneración de las malezas gramíneas después de los tratamientos con fuego, pueden ayudar a mejorar las recomendaciones dadas a los encargados del mantenimiento de los caminos y a los administradores de parques para el manejo de estas malezas.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ascard, J. 1995a. Effects of flame weeding on weed species at different developmental stages. Weed Res. 35:397411.Google Scholar
Ascard, J. 1995b. Thermal weed control by flaming: Biological and technical aspects. Ph.D dissertation. Alnarp, Sweden: Swedish University of Agricultural Sciences, Department of Agricultural Engineering. Report 200.Google Scholar
Ascard, J., Hatcher, P. E., Melander, B., and Upadhyaya, M. K. 2007. Thermal weed control. Pages 155175 in Upadhyaya, M. K. and Blackshaw, R. E., eds. Nonchemical Weed Management: Principles, Concepts, and Technology. Wallingford, UK CAB International.Google Scholar
Augustin, B., Fischer, E., and Seibel, H. 2001. Possibilities of weed control in urban areas (OT: Möglichkeiten der Vegetationskontrolle auf Nicht-Kulturland). Gesunde Pflanzen 53:169176. [In German with English summary]Google Scholar
Benvenuti, S. 2004. Weed dynamics in the Mediterranean urban ecosystem: ecology, biodiversity and management. Weed Res. 44:341354.CrossRefGoogle Scholar
Hansen, P. K., Kristoffersen, P., and Kristensen, K. 2004. Strategies for nonchemical weed control on public paved areas in Denmark. Pest Manag. Sci. 60:600604.Google Scholar
Holgersen, S. 1994. Forebyg ukrudt i belægningerne. Grønt Miljø 12:2125.Google Scholar
Kreeb, K. and Warnke, D. 1994. Infrarotstrahlen gegen Pflanzenbewuchs an Gleisanlagen. Einsenbahningenieur 3:160166.Google Scholar
Kristoffersen, P., Rask, A. M., and Grundy, A., et al. 2008b. A review of pesticide policies and regulations on nonagricultural areas in seven European countries. Weed Res. 48:201214.Google Scholar
Kristoffersen, P., Rask, A. M., and Larsen, S. U. 2008a. Nonchemical weed control on traffic islands: a comparison of the efficacy of five weed control methods. Weed Res. 48:124130.Google Scholar
Melander, B., Holst, N., Grundy, A. C., Kempenaar, C., Riemens, M. M., Verschwele, A., and Hansson, D. 2009. Weed occurrence on pavements in five North European towns. Weed Res. 49:516525.Google Scholar
Rask, A. M. and Kristoffersen, P. 2007. A review of nonchemical weed control on hard surfaces. Weed Res. 47:370380.Google Scholar
Ulloa, S. M., Datta, A., and Knezevic, S. Z. 2010a. Growth stage influenced differential response of foxtail and pigweed species to broadcast flaming. Weed Technol. 24:319325.Google Scholar
Ulloa, S. M., Datta, A., and Knezevic, S. Z. 2010b. Tolerance of selected weed species to broadcast flaming at different growth stages. Crop Prot. 29:13811388.Google Scholar
Vermeulen, G. D., Verwijs, B. R., and Kempenaar, C. 2006. Effectiveness of Weed Control on Pavements. Wageningen, the Netherlands Plant Research International.Google Scholar
Warwick, S. I. 1979. The biology of Canadian weeds. 37. Poa annua (L.). Can. J. Plant Sci. 59:10531066.Google Scholar
Weisberg, S. 2005. Applied Linear Regression. New York John Wiley & Sons.Google Scholar
Zwerger, P., Eggers, T., Preussendorff, G., and Verschwele, A. 2000. Zur Situation der Unkrautbekämpfung im urbanen Bereich. Stadt Grün 13:5460.Google Scholar