Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T11:13:41.977Z Has data issue: false hasContentIssue false

Control of Glyphosate-Resistant Horseweed (Conyza canadensis) with Saflufenacil Tank Mixtures in No-Till Cotton

Published online by Cambridge University Press:  20 January 2017

Brock S. Waggoner
Affiliation:
West Tennessee Research and Education Center, Department of Plant Sciences, University of Tennessee, 605 Airways Blvd., Jackson, TN 38301
Thomas C. Mueller
Affiliation:
University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37920
Jason A. Bond
Affiliation:
Mississippi State University, Delta Research and Extension Center, P.O. Box 197, Stoneville, MS 38776
Lawrence E. Steckel*
Affiliation:
West Tennessee Research and Education Center, Department of Plant Sciences, University of Tennessee, 605 Airways Blvd., Jackson, TN 38301
*
Corresponding author's E-mail: [email protected]

Abstract

Glyphosate-resistant (GR) horseweed management continues to be a challenge in no-till cotton systems in Tennessee and Mississippi. Field studies were conducted in 2009 and 2010 to evaluate saflufenacil in tank mixtures with glyphosate, glufosinate, or paraquat on GR horseweed prior to planting cotton. Saflufenacil and saflufenacil tank mixtures were applied 7 d before planting (DBP). Three broad spectrum herbicides were tank-mixed with saflufenacil at rates of 0, 6.3, 12.5, 25, and 50 g ai ha−1. Saflufenacil at 25 and 50 g ai ha−1 in tank mixture with all three broad-spectrum herbicides provided similar GR horseweed control when compared to the current standard of glyphosate + dicamba. Across all saflufenacil rates, lint cotton yield among the glyphosate, glufosinate, and paraquat tank mixture treatments did not differ from each other. Control of horseweed with 25 or 50 g ha−1 of saflufenacil across all tank mixtures also was not different from the standard of glyphosate + dicamba. Moreover, saflufenacil, on silt loam soil evaluated in this study, showed no more cotton injury than glyphosate applied 7 d or more before planting. Saflufenacil applied alone at 25 g ha−1 provided lower control of GR horseweed than the standard, which translated to lower lint yield compared to the glyphosate + dicamba treatment or saflufenacil with each tank mixture partner. The 12.5 g ha−1 rate of saflufenacil tank mixed with either paraquat or glufosinate provided less horseweed control (< 85%) than if higher rates of saflufenacil were used (> 95%). However, lint cotton yield was not different between these treatments. This research suggests that saflufenacil at 25 g ha−1 is the most optimal rate for tank mixtures with glyphosate, glufosinate, or paraquat. It also reaffirms earlier research that the 25 g ha−1 saflufenacil rate safely can be applied inside the currently labeled 42-d waiting period between a saflufenacil application and cotton planting.

El manejo de Conyza canadensis resistente al glyphosate (GR) sigue siendo un reto en los sistemas de cultivo de algodón con cero labranza en Tennessee y Mississippi. Estudios de campo realizados en 2009 y 2010 evaluaron el saflufenacil mezclado en tanque con, ya sea glyphosate, glufosinate o paraquat antes de la siembra de algodón para el control de C. canadensis GR. Se aplicó saflufenacil y mezclas del mismo herbicida 7 días antes de la siembra (DBP). Las dosis de las mezclas de saflufenacil con tres de los herbicidas de amplio espectro, fueron 0, 6.3, 12.5, 25 y 50 g ia ha−1. Saflufenacil a 25 y 50 g ia ha−1 en mezcla con cualquiera de los tres herbicidas de amplio espectro proporcionaron un control de C. canadensis similar al obtenido con el estándar actual de glyphosate + dicamba. Para todas las dosis de saflufenacil, no hubo diferencia en el rendimiento de la fibra de algodón entre los tratamientos con mezclas de glyphosate, glufosinate y paraquat. El control de C. canadensis tampoco fue diferente del estándar de glyphosate + dicamba a 25 ó 50 g ha−1 de saflufenacil para todas las mezclas. Por otra parte, saflufenacil en suelo franco limoso, evaluado en este estudio, no mostró mayor daño en el algodón que el glyphosate aplicado 7 o más días antes de la siembra. Saflufenacil aplicado solo a 25 g ha−1 proporcionó menor control de C. canadensis GR que el estándar, lo que se tradujo en un menor rendimiento de fibra comparado al tratamiento glyphosate + dicamba o saflufenacil con cada uno de los otros herbicidas de mezcla en tanque. La dosis de 12.5 g ha−1 de saflufenacil mezclado ya sea, con paraquat o glufosinate proporcionó menor control de la maleza (<85%) que cuando se usaron dosis más altas de saflufenacil (>95%). Sin embargo, el rendimiento de la fibra no fue diferente entre los tratamientos. Esta investigación sugiere que el saflufenacil a 25 g ha−1 es la dosis óptima para mezclas con glyphosate, glufosinate o paraquat. También reafirma la investigación anterior, que la dosis 25 g ha−1 de saflufenacil puede aplicarse de manera segura dentro del período de 42 días de espera entre la aplicación del herbicida y la siembra del algodón, como actualmente se recomienda en la etiqueta.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, D. M., Swanton, C. J., Hall, J. C., and Mersey, B. G. 1993. The influence of temperature and relative humidity on the efficacy of glufosinate–ammonium. Weed Res. 33:139143.CrossRefGoogle Scholar
Anonymous, . 2008. Kixor herbicide, worldwide technical brochure. Produced by the Kixor global marketing team. Research Triangle Park, NC BASF Agricultural Products.Google Scholar
Anonymous, . 2010. Sharpen herbicide label. Research Triangle Park, NC BASF Agricultural Products.Google Scholar
Brown, S. M. and Whitwell, T. 1988. Influence of tillage on horseweed, Conyza canadensis . Weed Technol. 2:269270.Google Scholar
Bruce, J. A. and Kells, J. J. 1990. Horseweed (Conyza canadensis) control in no-tillage soybeans (Glycine max) with preplant and preemergence herbicides. Weed Technol. 4:642647.Google Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences for combined analysis of experiments with two- or three-factor treatment designs. Agron. J. 81:665672.CrossRefGoogle Scholar
Heap, I. 2008. International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: August 27, 2010.Google Scholar
Kapusta, G. 1979. Seedbed tillage and herbicide influence on soybean [Glycine max (L.) Merr.] weed control and yield. Weed Sci. 27:520526.Google Scholar
Koger, C. H., Poston, D. H., Hayes, R. M., and Montgomery, R. F. 2004. Glyphosate-resistant (Conyza canadensis) horseweed in Mississippi. Weed Technol. 18:820825.Google Scholar
Liebl, R. A., Walter, H., Bowe, S. J., Holt, T. J., and Westberg, D. E. 2008. Glyphosate-resistant (Conyza canadensis) horseweed in Mississippi. Weed Technol. 18:820825.Google Scholar
Main, C. L., Mueller, T. C., Hayes, R. M., and Wilkerson, J. B. 2004. Response of selected horseweed (Conyza canadensis (L.) Cronq.) populations to glyphosate. J. Agric. Food Chem. 52:879883.Google Scholar
Main, C. L., Steckel, L. E., Hayes, R. M., and Mueller, T. C. 2006. Biotic and abiotic factors influence horseweed emergence. Weed Sci. 54:11011105.CrossRefGoogle Scholar
Owen, L. N., Steckel, L. E., Koger, C. H., Main, C. L., and Mueller, T. C. 2009. Evaluation of spring and fall burndown application timings on control of glyphosate-resistant horseweed (Conyza canadensis) in no-till cotton. Weed Technol. 23:335339.Google Scholar
Regehr, D. L. and Bazzazz, F. A. 1979. The population dynamics of Erigeron canadensis, a successful winter annual. J. Ecol. 67:923933.Google Scholar
[SAS]. Statistical Analysis Systems. 2009. Statistical Analysis Software. Version 9.1. Cary, NC Statistical Analysis Systems Institute. 451 p.Google Scholar
Sauer, J. and Struik, G. 1964. A possible ecological relation between soil disturbance, light-flash, and seed germination. Ecology 45:884886.Google Scholar
Scott, R. C., Boyd, J. W., and Smith, K. L. 2009. Recommended chemicals for weed and brush control. City, AR University of Arkansas Extension Publication. MP44. Fayetteville, AR. 178 p.Google Scholar
Steckel, L. E., Craig, C. C., and Hayes, R. M. 2006. Glyphosate-resistant horseweed (Conyza canadensis) control with glufosinate prior to planting no-till cotton (Gossypium hirustum). Weed Technol. 20:10471051.CrossRefGoogle Scholar
Steckel, L. E. and Culpepper, S. 2006. Impact and management of glyphosate-resistant weeds in the southern region. National IPM conference 46.4. [Proceedings].Google Scholar
Steckel, L. E. and Gwathmey, C. O. 2009. Glyphosate-resistant horseweed (Conyza canadensis) interference in cotton (Gossypium hirsutium). Weed Science. 57:346350.Google Scholar
Steckel, L. E., Rhodes, G. N., Main, C., Sims, B. D., Hayes, R. M., McClure, A. M., Mueller, T. C., and Brown, B. 2010. Weed control manual for Tennessee field crops, forage crops, pastures, farm ponds and harvest aids. Knoxville, TN University of Tennessee Extension. PB1580: 120 p.Google Scholar
Troxler, S. C., Askew, S. D., Wilcut, J. W., Smith, W. D., and Paulsgrove, M. D. 2002. Clomazone, fomesafen, and bromoxynil systems for bromoxynil-resistant cotton (Gossypium hirsutum). Weed Technol. 16:838844.Google Scholar
[USDA] United States Department of Agriculture. 2010. National Agriculture Statistics Service. http://www.nass.usda.gov. Accessed: August 27, 2010.Google Scholar
Uva, R. H., Neal, J. C., and DiTomaso, J. M. 1997. Weeds of the Northeast. City, State Comstock Publishing Associates, Ithaca, NY. Pp. 453454.Google Scholar
Van Gessel, M. M. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:703705.Google Scholar
Wild, A., Sauer, H., and Ruhle, W. 1987. The effect of phosphinothricin (glufosinate) on photosynthesis. I. Inhibition of photosynthesis and accumulation of ammonia. Z. Naturforsch. 42:263269.Google Scholar