Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-19T01:07:42.588Z Has data issue: false hasContentIssue false

Conservation Management and Crop Rotation Effects on Weed Populations in a 12-Year Irrigated Study

Published online by Cambridge University Press:  20 January 2017

Robert E. Blackshaw*
Affiliation:
Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, Alberta, Canada, T1J 4B1
Drusilla C. Pearson
Affiliation:
Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, Alberta, Canada, T1J 4B1
Francis J. Larney
Affiliation:
Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, Alberta, Canada, T1J 4B1
Peter J. Regitnig
Affiliation:
Lantic Inc., 5405 64th Street, Taber, Alberta, Canada T1G 2C4
Jennifer J. Nitschelm
Affiliation:
Lantic Inc., 5405 64th Street, Taber, Alberta, Canada T1G 2C4
Newton Z. Lupwayi
Affiliation:
Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, Alberta, Canada, T1J 4B1
*
Corresponding author's E-mail: [email protected].

Abstract

Potato, dry bean, and sugar beet production have increased markedly in recent years on irrigated cropland in Alberta, Canada. Concerns exist about declining soil quality and increased soil erosion when these low-residue crops are grown in sequence in short-duration rotations. A 12-yr rotation study was conducted to determine the merits of adopting various conservation practices (reduced tillage, cover crops, composted manure) and longer-duration rotations to develop a more sustainable production system for these row crops. This article reports on weed density and weed seedbank data collected in the study. Weed densities recorded prior to applying postemergence herbicides indicated that conservation compared with conventional management treatments had greater weed densities in 30 to 45% of the cases in 3-, 4-, and 5-yr rotations. In contrast, a 6-yr conservation rotation that included 2 yr of timothy forage resulted in similar or lower weed densities than rotations with conventional management practices. Residual weed densities recorded 4 wk after applying postemergence herbicides were only greater in conservation than conventional rotations in 2 of 12 yr, regardless of rotation length. Weed seedbank densities at the conclusion of the 12-yr study were similar for 3- to 6-yr rotations under either conservation or conventional management. These findings indicate that implementing a suite of conservation practices poses little risk of increased weed populations in the long term. This knowledge will facilitate grower adoption of more sustainable agronomic practices for irrigated row crops in this region.

La producción de papa, frijol, y de remolacha azucarera ha incrementado en forma marcada en años recientes en zonas agrícolas con riego en Alberta, Canada. Existe preocupación acerca del deterioro de la calidad del suelo y el aumento de la erosión cuando este tipo de cultivos que dejan pocos residuos son producidos en secuencia en rotaciones de corta duración. Un estudio de rotación de 12 años fue realizado para determinar los méritos de la adopción de varias prácticas de conservación (labranza reducida, cultivos de cobertura, estiércol compostado) y rotaciones de mayor duración para desarrollar un sistema de producción más sostenible para estos cultivos. Este artículo reporta los datos colectados de densidad de malezas y banco de semillas en este estudio. Las densidades de malezas registradas antes de aplicar herbicidas postemergentes indicaron que los tratamientos de conservación al compararse con los de manejo convencional tuvieron mayores densidades de malezas en 30 a 45% de los casos, en rotaciones de 3, 4, y 5 años. En contraste, una rotación de conservación de 6 años que incluyó 2 años del forraje Phleum pratense resultó en densidades de malezas similares o menores a las prácticas de manejo convencional. Las densidades de malezas residuales registradas 4 semanas después de la aplicación de herbicidas postemergentes fueron mayores en rotaciones de conservación que en rotaciones convencionales solamente en 2 de los 12 años, sin importar la duración de la rotación. Las densidades del banco de semillas al momento de la conclusión del estudio de 12 años fueron similares para las rotaciones de 3 y 6 años bajo cualquiera de los manejos de conservación o convencionales. Estos resultados indican que el implementar una variedad de prácticas de conservación representa poco riesgo de aumentos en las poblaciones de malezas en el largo plazo. Este conocimiento facilitará la adopción por parte de los productores de más prácticas agronómicas sostenibles para cultivos con riego en esta región.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Alberta Agriculture and Rural Development, 5401 1st Avenue South, Lethbridge, Alberta, Canada T1J 4V6.

Associate Editor for this paper: Randy L. Anderson, USDA-ARS.

References

Literature Cited

Alberta Agriculture Rural Development (2014) Alberta Irrigation Information 2013 http://www1.agric.gov.ab.ca/$Department/deptdocs.nsf/all/irr7401. Accessed March 25, 2015Google Scholar
Anderson, RL, Tanaka, DL, Black, AL, Schweizer, EE (1998) Weed community and species response to crop rotation, tillage and nitrogen fertility. Weed Technol 12:531536 Google Scholar
Ball, DA (1992) Weed seedbank response to tillage, herbicides, and crop rotation sequence. Weed Sci 40:654659 Google Scholar
Blackshaw, RE (1994) Crop rotation reduces downy brome (Bromus tectorum) populations in winter wheat. Weed Technol 8:728732 Google Scholar
Blackshaw RE (2005a) Nitrogen fertilizer, manure and compost effects on weed growth and competition with spring wheat. Agron J 97:16121621 Google Scholar
Blackshaw RE (2005b) Tillage intensity affects weed communities in agroecosystems. Pages 209221 inInderjit, ed. Invasive Plants: Ecological and Agricultural Aspects. Basel, Switzerland: Birkhauser Verlag Google Scholar
Blackshaw, RE, Moyer, JR, Huang, HC (2005) Beneficial effects of cover crops on soil health and crop management. Recent Res Dev Soil Sci 1:1535 Google Scholar
Booth, BD, Swanton, CJ (2002) Assembly theory applied to weed communities. Weed Sci 50:213 Google Scholar
Cardina, J, Herms, CP, Doohan, DJ (2002) Crop rotation and tillage system effects on weed seedbanks. Weed Sci 50:448460 Google Scholar
Cardina, J, Sparrow, DH (1996) A comparison of methods to predict weed seedlings populations from the soil seedbank. Weed Sci 44:4651 Google Scholar
Cudney, DW, Wright, SD, Shultz, TA, Reints, JS (1992) Weed seed in dairy manure depends on collection site. Calif Agric 46:3132 Google Scholar
Dabney, SM, Delgado, JA, Reeves, DW (2001) Using winter cover crops to improve soil and water quality. Commun Soil Sci Plant Anal 32:12211250 Google Scholar
Entz, MH, Bullied, WJ, Katepa, F (1995) Rotational benefits of forage crops in Canadian prairie cropping systems. J Prod Agric 8:521529 Google Scholar
Grandy, AS, Porter, GA, Erich, MS (2002) Organic amendment and rotation crop effects on the recovery of soil organic matter and aggregation in potato cropping systems. Soil Sci Soc Am J 66:13111319 Google Scholar
Gulden, RH, Lewis, DW, Froese, JC, Van Acker, RC, Martens, GB, Entz, MH, Derksen, DA, Bell, LW (2011) The effect of rotation and in-crop weed management on the germinable weed seedbank after 10 years. Weed Sci 59:553561 Google Scholar
Hartwig, NL, Ammon, HU (2002) Cover crops and living mulches. Weed Sci 50:688699 Google Scholar
Larney, FJ, Blackshaw, RE (2003) Weed seed viability in composted beef cattle feedlot manure. J Environ Qual 32:11051113 Google Scholar
Larney, FJ, Hao, X, Topp, E (2011) Manure management. Pages 247264 in Hatfield, JL, Sauer, TJ, eds. Soil Management: Building a Stable Base for Agriculture. Madison, WI: American Society of Agronomy/Soil Science Society of America Google Scholar
Larney, FJ, Lindwall, CW, Izaurralde, RC, Moulin, AP (1994) Tillage systems for soil and water conservation on the Canadian prairie. Pages 305328 in Carter, MR, ed. Conservation Tillage in Temperate Agroecosystems—Development and Adaptation to Soil, Climatic and Biological Constraints. Boca Raton, FL: CRC Press Inc Google Scholar
Larney, FJ, Olson, AF (2006) Windrow temperatures and chemical properties during active and passive aeration composting of beef cattle feedlot manure. Can J Soil Sci 86:783797 Google Scholar
Légère, A, Samson, N (1999) Relative influence of crop rotation, tillage, and weed management on weed associations in spring barley cropping systems. Weed Sci 47:112122 Google Scholar
Li, L, Larney, FJ, Angers, DA, Blackshaw, RE (2015) Surface soil quality attributes following 12 years of conventional and conservation management on irrigated rotations in southern Alberta. Soil Sci Soc Am J 79:930942 Google Scholar
Liebman, M, Dyck, E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92122 Google Scholar
Liebman, M, Staver, CP (2001) Crop diversification for weed management. Pages 322374 in Liebman, M, Mohler, CL, and Staver, CP, eds. Ecological Management of Agricultural Weeds. Cambridge, UK: Cambridge University Press Google Scholar
Menalled, FD, Gross, KL, Hammond, M (2001) Weed aboveground and seedbank community responses to agricultural management systems. Ecol Appl 11:15861601 Google Scholar
Menalled, FD, Liebman, M, Buhler, DD (2004) Impact of composted swine manure and tillage on common waterhemp (Amaranthus rudis) competition with soybean. Weed Sci 52:605613 Google Scholar
Parham, JA, Deng, SP, Raun, WR, Johnson, GV (2002) Long-term cattle manure application in soil. I. Effect on soil phosphorus levels, microbial biomass C, and dehydrogenase and phosphatase activities. Biol Fertil Soils 35:328337 Google Scholar
SAS Institute Inc. 2012. SAS OnlineDoc® 9.3. Cary, NC: SAS Institute Inc Google Scholar
Sarrantonio, M, Gallandt, ER (2003) The role of cover crops in North American cropping systems. J Crop Prod 8:5373 Google Scholar
Schoofs, A, Entz, MH (2000) Influence of annual forages on weed dynamics in a cropping system. Can J Plant Sci 80:187198 Google Scholar
Sosnoskie, LM, Herms, CP, Cardina, J (2006) Weed seedbank community composition in a 35-yr-old tillage and rotation experiment. Weed Sci 54:263273 Google Scholar
Sosnoskie, LM, Herms, CP, Cardina, J, Webster, TM (2009) Seedbank and emerged weed communities following adoption of glyphosate-resistant crops in a long-term tillage and rotation study. Weed Sci 55:261270 Google Scholar
Sturz, AV, Matheson, BG, Arsenault, W, Kimpinski, J, Christie, BR (2001) Weeds as a source of plant growth promoting rhizobacteria in agricultural soils. Can J Microbiol 47:10131024 Google Scholar
Swift, MJ, Anderson, JM (1993) Biodiversity and ecosystem function in agricultural systems. Pages 1441 in Schultz, ED, Mooney, HA, eds. Biodiversity and Ecosystem Function. Berlin: Springer Google Scholar
Teasdale, JR (1996) Contribution of cover crops to weed management in sustainable agricultural systems. J Prod Agric 9:475479 Google Scholar