Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T21:24:04.822Z Has data issue: false hasContentIssue false

Confirmation and Management of Common Ragweed (Ambrosia artemisiifolia) Resistant to Diclosulam

Published online by Cambridge University Press:  20 January 2017

Aman Chandi
Affiliation:
Department of Crop Science, North Carolina State University, Box 7620, Raleigh, NC 27695
David L. Jordan*
Affiliation:
Department of Crop Science, North Carolina State University, Box 7620, Raleigh, NC 27695
Alan C. York
Affiliation:
Department of Crop Science, North Carolina State University, Box 7620, Raleigh, NC 27695
Bridget R. Lassiter
Affiliation:
Department of Crop Science, North Carolina State University, Box 7620, Raleigh, NC 27695
*
Corresponding author's E-mail: [email protected]

Abstract

Selection for biotypes of common ragweed expressing resistance to acetolactate synthase (ALS)–inhibiting herbicides has increased in North Carolina and surrounding states. Research was conducted in North Carolina to confirm common ragweed resistance to diclosulam and to compare herbicide programs designed to control ALS-resistant common ragweed in corn, cotton, peanut, and soybean. In greenhouse experiments, 50% inhibition values following POST application of diclosulam for mortality of plants, visual estimates for percentage of control, and percentage of reduction in plant fresh weight were 557- to 653-fold higher for the suspected ALS-resistant biotype compared with a suspected ALS-susceptible biotype. Herbicides with different modes of action, including atrazine, dicamba, and glyphosate in corn; fomesafen, glyphosate, MSMA, and prometryn in cotton; bentazon, flumioxazin, and lactofen in peanut; and flumioxazin, glyphosate, and lactofen in soybean controlled common ragweed more effectively than programs relying on cloransulam-methyl (soybean), diclosulam (peanut), thifensulfuron (corn), and trifloxysulfuron (cotton), which typically control nonresistant common ragweed populations. Applying tank-mix or sequential applications of herbicides with different modes of action was effective in controlling ALS-resistant common ragweed in all crops.

La selección de biotipos de Ambrosia artemisiifolia que manifiestan resistencia a herbicidas inhibidores de la acetolactato sintetasa (ALS) ha aumentado en Carolina del Norte y estados circunvecinos. Se realizó una investigación en Carolina del Norte para confirmar la resistencia de A. artemisiifolia a diclosulam y para comparar programas de herbicidas diseñados para controlar la A. artemisiifolia resistente a herbicidas ALS en los cultivos de maíz, algodón, maní y soya. En experimentos de invernadero, los valores I50 después de la aplicación posemergente de diclosulam para la mortalidad de las plantas, estimaciones visuales del porcentaje de control y la reducción porcentual en el peso fresco de la planta, fueron 557 a 653 veces mayores para el biotipo sospechoso de resistencia a herbicidas ALS, en comparación con un biotipo sospechoso de ser susceptible a ALS. Los herbicidas con diferentes modos de acción incluyendo: atrazina, dicamba y glifosato en maíz; fomesafen, glifosato, MSMA, y prometrina en algodón; bentazon, flumioxazin y lactofen en maní; y flumioxazin, glifosato y lactofen en soya, controlaron a A. artemisiifolia más efectivamente que los programas que dependen de cloransulam (soya), diclosulam (maní), thifensulfuron (maíz), y trifloxysulfuron (algodón) que típicamente controlan las poblaciones de A. artemisiifolia no resistentes. Las aplicaciones de herbicidas en mezclas o en secuencia con diferentes modos de acción, fueron efectivas para controlar la A. artemisiifolia resistente a herbicidas ALS en todos los cultivos.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2010a. Strongarm® herbicide specimen label. Dow Publication No. D02-044-008. Indianapolis, IN Dow AgroSciences. 5p.Google Scholar
Anonymous. 2010b. Valor® SX herbicide label. Valor Publication No. 2010-VLR-0010. Walnut Creek, CA Valent USA Corp. 27 p.Google Scholar
Bailey, W. A., Wilcut, J. W., Jordan, D. L., Swann, C. W., and Langston, V. B. 1999. Weed management in peanut (Arachis hypogaea) with diclosulam preemergence. Weed Technol. 13:450456.Google Scholar
Burgos, N., Culpepper, S., Dotray, P., Kendig, J. A., Wilcut, J., and Nichols, R. 2006. Managing Herbicide Resistance in Cotton Cropping Systems. http//www.cotton.org/tech/pest/upload/07CIweedresistbulletin. Accessed: February 9, 2010.Google Scholar
Everman, W. J., Clewis, S. B., Taylor, Z. G., and Wilcut, J. W. 2006. Influence of diclosulam postemergence application timing on weed control and peanut tolerance. Weed Technol. 20:651657.Google Scholar
Frans, R. E., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental designs and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946. in Camper, N. D., ed. Research Methods in Weed Science. Champaign, IL Southern Weed Science Society.Google Scholar
Grey, T. L., Bridges, D. C., and Eastin, E. F. 2001. Influence of application rate and timing of diclosulam on weed control in peanut (Arachis hypogaea L.). Peanut Sci. 28:1319.Google Scholar
Gunsolus, J. L. 2008. Herbicide Resistant Weeds. St. Paul, MN University of Minnesota Extension Publ. WW-06077.Google Scholar
Heap, I. 2010. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/In.asp. Accessed: December 19, 2010.Google Scholar
Jordan, D., Prostko, E., and Dotray, P., et al. 2007. Managing herbicide-resistant weeds in peanuts in the United States. Raleigh, NC North Carolina Cooperative Extension Service Publ. AG-692. 7 p. http//www.peanut.ncsu.edu. Accessed: February 9, 2010.Google Scholar
Lancaster, S. H., Beam, J. B., Lanier, J. E., Jordan, D. L., and Johnson, P. D. 2007. Weed and peanut (Arachis hypogaea) response to diclosulam applied postemergence. Weed Technol. 21:618622.CrossRefGoogle Scholar
Lassiter, B. R., Wilkerson, G. G., Jordan, D. L., Shew, B. B., and Brandenburg, R. L. 2007. Surprising results from a cover crop trial with peanut. Proc. Am. Peanut Res. Educ. Soc. 39:4344.Google Scholar
Loux, M. M., Stachler, J. M., Johnson, W. G., Nice, G. R. W., and Bauman, T. T. 2010. Weed Control Guide for Ohio Crops. Columbus, OH Ohio State Extension Bull 789.Google Scholar
Mehlich, A. 1984. Photometric determination of humic matter in soils, a proposed method. Commun. Soil Sci. Plant Anal. 15:14171422.CrossRefGoogle Scholar
Mekki, M. and Leoux, G. D. 1994. 1994. Activity of nicosulfuron, rimsulfuron, and their mixture on field corn (Zea mays), soybean (Glycine max), and seven weed species. Weed Technol. 8:436440.CrossRefGoogle Scholar
Mozingo, R. W., Coffelt, T. A., and Isleib, T. G. 2000. Registration of ‘VA 98R’ peanut. Crop Sci. 40:12021203.Google Scholar
Patzoldt, W. L., Tranel, P. J., Alexander, A. J., and Schmitzer, P. R. 2001. A common ragweed population resistant to cloransulam-methyl. Weed Sci. 49:485490.Google Scholar
Price, A. J., Wilcut, J. W., and Swann, C. W. 2002. Weed management with diclosulam in peanut (Arachis hypogaea). Weed Technol. 16:724730.CrossRefGoogle Scholar
Scott, G. H., Askew, S. D., and Wilcut, J. W. 2001. Economic evaluation of diclosulam and flumioxazin systems in peanut (Arachis hypogaea). Weed Technol. 15:360364.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.Google Scholar
Webster, T. M. 2009. Weed survey—southern states. Proc. South. Weed Sci. Soc. 62:509524.Google Scholar
Williams, E. J. and Drexler, J. S. 1981. A non-destructive method for determining peanut pod maturity, pericarp, mesocarp, color, morphology, and classification. Peanut Sci. 8:134141.CrossRefGoogle Scholar