Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T20:05:54.817Z Has data issue: false hasContentIssue false

A Complex Coacervate Formulation for Delivery of Colletotrichum truncatum 00-003B1

Published online by Cambridge University Press:  20 January 2017

Russell K. Hynes*
Affiliation:
Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
Paulos B. Chumala
Affiliation:
Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
Daniel Hupka
Affiliation:
Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
Gary Peng
Affiliation:
Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
*
Corresponding author's E-mail: [email protected].

Abstract

A complex coacervate formulation was developed for Colletotrichum truncatum 00-003B1 (Ct), a bioherbicidal fungus against scentless chamomile, and tested in the greenhouse. A two-step process was developed to formulate Ct conidia: (1) invert emulsion preparation—emulsify an aqueous suspension of Ct conidia in nonrefined vegetable oil with the aid of a surfactant, and (2) encapsulate the Ct conidia invert emulsion by complex coacervation. Formulation ingredients, including nonrefined vegetable oils, surfactants, proteins, and carbohydrates, and formulation-processing parameters, including mixing speed and the amount of oil added to invert emulsions, were examined for maximum retention of Ct conidia in the formulation. Most formulation ingredients considered and tested in this study were compatible with Ct, with no significant reduction in conidial germination and mycelial growth. The surfactant soya lecithin promoted the greatest retention of Ct conidia (88%) in the invert emulsion, followed by sorbitan monooleate (82%), glycerol monooleate (70%), and sorbitan trioleate (55%). Optimal retention of Ct conidia in the invert emulsion was observed with a water : oil ratio of 1 : 1.8 to 1 : 3.7, and an overhead paddle stirring speed of 300 rpm when preparing the emulsion. Complex coacervate wall ingredients of 1% gelatin and 2% gum arabic were most effective for Ct conidia retention. In greenhouse studies, scentless chamomile disease rating, following a 24-h dew period, was higher on plants sprayed with the Ct conidia complex coacervate formulation than on plants with Ct conidia suspended in 0.1% Tween 80.

Una fórmula compleja múltiple fue desarrollada para Collectotrichum truncatun 00-003B1 (Ct), un herbicida biológico a base de hongos contra la manzanilla sin olor (falsa manzanilla), Tripleurospermun perforatum (Matricaria perforata), y fue probada bajo condiciones de invernadero y de campo. Se llevó a cabo un proceso de dos pasos para formular Ct conidia: i) Invertir la preparación de la emulsión –emulsificar una suspensión acuosa de Ct conidia en un aceite vegetal no refinado con la ayuda de un surfactante y ii) encapsular la emulsión invertida de Ct conidia por coacervación compleja. Los ingredientes de la fórmula, que incluían aceites vegetales no refinados, surfactantes, proteínas y carbohidratos y así como otros parámetros tales como: velocidad mixta y la cantidad de aceite adicionado para invertir emulsiones, fueron examinados para determinar la máxima retención de Ct conidia en la misma. La mayoría de los ingredientes de la fórmula considerados y probados en este estudio, fueron compatibles con Ct, con un impacto no significativo observado en la germinación conidial y en el crecimiento micelial. Los surfactantes de lecitina de soya proporcionaron la mejor retención de Ct conidia (el 88% de la emulsión invertida) seguida por sorbitán monooleato (82%), glicerol monooleato (70%), y sorbitán trioleate (55%). La retención optima de Ct conidia en la emulsión invertida fue observada con una relación de agua a aceite de 1:1.8 −1:3.7 y una velocidad de mezcla de 300 rpm cuando la emulsión se preparaba. Los ingredientes gelatina/chicle árabe, 1 y 2% respectivamente, fueron más efectivos para la retención de Ct. Conidia. La eficacia del control de malezas de la fórmula fue evaluada en la manzanilla sin olor en condiciones de invernadero y de campo. En los estudios que corresponden al invernadero, el porcentaje de enfermedad observado en la manzanilla sin olor después de un período de rocío de 24 horas fue más alto en las plantas donde se roció la fórmula de coacervación compleja Ct conidia, en comparación con Ct conidia suspendida en 0.1% Tween 80. En los estudios de campo, un efecto adicional fue observado en la manzanilla sin olor, en el cuál se redujo el peso de la planta seca, NS P=0 al metribuzin, aplicando una dosis dividida de la fórmula de coacervación compleja de Ct y el herbicida metribuzin (Sencor ®).

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Copyright her majesty the queen in right of Canada as represented by Agriculture & Agri-Food Canada

References

Literature Cited

Amiet-Charpentier, C., Benoit, J. P., Gadille, P., and Richard, J. 1998. Preparation of rhizobacteria-containing polymer microparticles using a complex coacervation method. Colloids Surf. A Physicochem. Eng. Asp 144:179190.Google Scholar
Amiet-Charpentier, C., Benoit, J. P., Le Meurlay, D., Gadille, P., and Richard, J. 2000. Preparation of bacteria-containing microparticles using water-dispersed polymers. Macromol. Symp 151:611616.Google Scholar
Auld, B. A., Hetherington, S. D., and Smith, H. E. 2003. Advances in bioherbicide formulation. Weed Biol. Manag 3:6167.Google Scholar
Becker, E., Shamoun, S. F., and Hintz, W. E. 2005. Efficacy and environmental fate of Chondrostereum purpureum used as a biological control for red alder (Alnus rubra). Biol. Control 33:269277.Google Scholar
Blackshaw, R. E. and Harker, K. N. 1997. Scentless chamomile (Matricaria perforata) growth, development, and seed production. Weed Sci 45:701705.Google Scholar
Bruhn, C. M., Diaz-Knauf, K., Feldman, N., Harwood, J. A. N., Ho, G., Ivans, E., Kubin, L., Lamp, C., Marshall, M., Osaki, S., Stanford, G., Steinbring, Y., Valdez, I., Williamson, E., and Wunderlich, E. 1991. Consumer food safety concerns and interest in pesticide-related information. J. Food Saf 12:253262.Google Scholar
Charudattan, R. and Hiebert, E. 2007. A plant virus as a bioherbicide for tropical soda apple, Solanum viarum . Outlooks Pest Manag 18:167171.Google Scholar
Crump, N. S., Cother, E. J., and Ash, G. J. 1999. Clarifying the nomenclature in microbial weed control. Biocontrol Sci. Technol 9:8997.Google Scholar
Dunlap, R. E. and Beus, C. E. 1992. Understanding public concerns about pesticides: an empirical examination. J. Cons. Aff 26:418.Google Scholar
Graham, G. L., Peng, G., Bailey, K. L., and Holm, F. A. 2006. Interactions of Colletotrichum truncatum with herbicides for control of scentless chamomile (Matricaria perforata). Weed Technol 20:877884.Google Scholar
Graham, G. L., Peng, G., Bailey, K. L., and Holm, F. A. 2007. Effect of plant stage, Colletotrichum truncatum dose, and use of herbicide on control of Matricaria perforata . BioControl (Dordr.) 52:573589.Google Scholar
Hynes, R. K. and Boyetchko, S. M. 2006. Research initiatives in the art and science of biopesticide formulations. Soil Biol. Biochem 38:845849.Google Scholar
Imaizumi, S., Honda, M., and Fujimori, T. 1999. Effect of temperature on the control of annual bluegrass (Poa annua L.) with Xanthomonas campestris pv. poae (JT-P482). Biol. Control 16:1317.Google Scholar
Jones, K. A. and Burges, H. D. 1998. Technology of formulation and application. Pages 730. In Burges, H. D. Formulation of Microbial Biopesticides: Beneficial Microorganisms, Nematodes and Seed Treatments. Dordrecht, The Netherlands: Kluwer Academic.Google Scholar
Kalantar, T. H., Tucker, C. J., Zalusky, A. S., Boomgaard, T. A., Wilson, B. E., Ladika, M., Jordan, S. L., Li, W. K., Zhang, X., and Goh, C. G. 2007. High throughput workflow for coacervate formation and characterization in shampoo systems. J. Cosmet. Sci 58:375383.Google Scholar
Little, T. M. and Hills, F. J. 1978. Transformations (what to do when data break the rules). Pages 162165. in. Agricultural Experimentation: Design and Analysis. Hoboken, NJ: Wiley.Google Scholar
Magnusson, E. and Cranfield, J. A. L. 2005. Consumer demand for pesticide free food products in Canada: a probit analysis. Can. J. Agric. Econ 53:6781.Google Scholar
Menaria, B. L. 2007. Bioherbicides: an eco-friendly approach to weed management. Curr. Sci 92:1011.Google Scholar
Peng, G., Bailey, K. L., Hinz, H. L., and Byer, K. N. 2005. Colletotrichum sp: a potential candidate for biocontrol of scentless chamomile (Matricaria perforata) in western Canada. Biocontrol Sci. Technol 15:497511.Google Scholar
Rabiskova, M. and Valaskova, J. 1998. The influence of HLB on the encapsulation of oils by complex coacervation. J. Microencapsul 15:747751.Google Scholar
Rawle, A. 2009. Basic Principals of Particle Size Analysis. http://www.rci.rutgers.edu/∼moghe/PSD%20Basics.pdf. Accessed: January 12, 2010.Google Scholar
Schmitt, C., Sanchez, C., Desobry-Banon, S., and Hardy, J. 1998. Structure and technofunctional properties of protein–polysaccharide complexes: a review. Crit. Rev. Food Sci. Nutr 38:689753.Google Scholar
Shabana, Y. M. 1997. Vegetable oil suspension emulsions for formulating the weed pathogen (Alternaria eichhorniae) to bypass dew. Z. Pflanzenkr. Pflanzenschutz 104:239245.Google Scholar
Suheyla, H. and Oner, L. 2000. Microencapsulation using coacervation/phase separation: An overview of the technique and applications. Pages 301311. In Wise, D. L. Handbook of Pharmaceutical Controlled Release Technology. New York, NY: Marcel Dekker.Google Scholar
Ustariz-Peyret, C., Coudane, J., Vert, M., Kaltsatos, V., and Boisrame, B. 2000. Labile conjugation of a hydrophilic drug to PLA oligomers to modify a drug delivery system: cephradin in a PLAGA matrix. J. Microencapsul 17:615624.Google Scholar
Vurro, M. and Casella, F. 2008. Weed microbial biocontrol agents: benefits and limitations. Outlooks Pest Manag 19:6772.Google Scholar
Weinbreck, F., Minor, M., and de Kruif, C. G. 2004. Microencapsulation of oils using whey protein/gum arabic coacervates. J. Microencapsul 21:667679.Google Scholar
Woo, S. L., Thomas, A. G., Peschken, D. P., Bowes, G. G., Douglas, D. W., Harms, V. L., and McClay, A. S. 1991. The biology of Canadian weeds, 99: Matricaria perforata Mérat (Asteraceae). Can. J. Plant Sci 71:11011119.Google Scholar
Yandoc-Ables, C. B., Rosskopf, E. N., and Charudattan, R. 2006. Plant pathogens at work: Progress and possibilities for weed control, part 1: classical vs. bioherbicidal approach. Pages 110. in American Phytopathological Society, APSnet August. http://www.apsnet.org/online/feature/weed1/ref.asp. Accessed: January 20, 2010.Google Scholar
Yeadon, D., Goldblatt, L., and Altschul, A. 1958. Lecithin in oil-in-water emulsions. J. Am. Oil Chem. Soc 35:435438.Google Scholar
Zhang, W., Wolf, T. M., Bailey, K. L., Mortensen, K., and Boyetchko, S. M. 2003. Screening of adjuvants for bioherbicide formulations with Colletotrichum spp. and Phoma spp. Biol. Control 26:95108.Google Scholar