Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T19:24:30.726Z Has data issue: false hasContentIssue false

Comparison of Weed Management Programs for Furrow-Irrigated and Flooded Hybrid Rice Production in Arkansas

Published online by Cambridge University Press:  20 January 2017

Muthukumar V. Bagavathiannan*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Robert C. Scott
Affiliation:
Extension Weed Science, University of Arkansas, Lonoke Extension and Applied Research Center, P.O. Box 357, Lonoke, AR 72086
*
Corresponding author's E-mail: [email protected]

Abstract

Whether season-long weed control can be achieved in a furrow-irrigated rice system with similar herbicide inputs to that of a flooded system is not known. Field experiments were conducted in 2007 and 2008 at Pine Tree, AR to evaluate different herbicide programs on the weed control efficacy and rice grain yield in furrow-irrigated and flooded rice production systems. Six herbicide programs were evaluated with and without additional late-season “as-needed” herbicide treatments. Minor injury to rice was noted for quinclorac plus propanil. However, the injury was transient and the plants fully recovered. Overall weed control was greater in the flooded system compared with the furrow-irrigated system (up to 20% greater), because flooding effectively prevented the emergence of most terrestrial weeds. In addition, rice grain yields were 13 to 14% greater in flooded compared with furrow-irrigated plots. Irrespective of the irrigation system, herbicide programs that contained a PRE-applied herbicide provided greater weed control and resulted in greater yield compared with those that did not contain PRE-applied herbicide, indicative of the importance of early-season weed control in achieving higher grain yields. On the basis of weed control, yield, and weed treatment cost, the herbicide program with clomazone PRE followed by propanil at four- to five-leaf rice was more efficient than other programs evaluated in both irrigation systems. However, furrow-irrigated plots required as-needed herbicide applications, which were applied after the four- to five-leaf rice stage when two or more plots within a program exhibited ≤ 80% control for any of the weed species. This suggests that furrow-irrigated rice production demands additional weed management efforts and thereby increases production costs. There is also a possibility for substantial yield reduction in the furrow-irrigated system compared with the flooded system. Nevertheless, furrow-irrigated rice production can still be a viable option under water-limiting situations and under certain topographic conditions.

Se desconoce si el control de malezas a lo largo de la temporada se puede lograr en un sistema de arroz irrigado por surcos con aplicaciones de herbicida similares a las del sistema de inundación. En 2007 y 2008 se realizaron experimentos de campo en Pine Tree, AR, para evaluar el impacto de diferentes programas de herbicidas sobre la eficacia del control de malezas y el rendimiento de grano en sistemas de producción de arroz irrigado por surcos o por inundación. Seis programas de herbicida fueron evaluados con y sin aplicaciones adicionales de herbicida tarde en el ciclo de crecimiento, “según fuera necesario”. Se notó un daño menor en el arroz con quinclorac más propanil. Sin embargo, el daño fue pasajero y las plantas se recuperaron totalmente. En general, el control de malezas fue mayor en los sistemas de inundación en comparación con el irrigado por surcos (hasta 20% mayor), porque la inundación evitó efectivamente la emergencia de la mayoría de las malezas terrestres. Además, los rendimientos del grano fueron 13 a 14% mayores en parcelas inundadas que en las irrigadas por surcos. Independientemente del sistema de irrigación, los programas que incluían una aplicación de herbicida PRE proporcionaron mejor control de malezas y resultaron en mayores rendimientos comparados con aquellos que no la incluían, lo que indica la importancia del control de malezas temprano en el ciclo de crecimiento para obtener mayores rendimientos de grano. En base al control de malezas, el rendimiento y el costo del tratamiento, el programa de herbicidas con clomazone PRE seguido por propanil cuando el arroz presentó 4 a 5 hojas, fue más eficiente que otros programas evaluados en ambos sistemas de irrigación. Sin embargo, las parcelas irrigadas por surcos requirieron aplicaciones de herbicida “según fuera necesario”, que fueron hechas después de la etapa de 4 a 5 hojas cuando dos o más parcelas en un programa exhibieron ≤ 80% de control para cualquier especie de malezas. Esto sugiere que la producción de arroz irrigado por surcos requiere esfuerzos adicionales de manejo de malezas y, por lo tanto, incrementa los costos de producción. Existe también la posibilidad de una reducción substancial en el rendimiento con el sistema de irrigación por surcos comparado con el sistema de inundación. Sin embargo, la producción de arroz irrigado por surcos aún puede ser una opción viable bajo situaciones limitadas de agua y bajo ciertas condiciones topográficas.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bagavathiannan, M. V., Norsworthy, J. K., Smith, K. L., and Burgos, N. 2011. Seedbank size and emergence pattern of barnyardgrass (Echinochloa crus-galli) in Arkansas. Weed Sci. 59:359365.Google Scholar
Bouman, B. A. M., Wang, H., Yang, X., Zhao, J., and Wang, C. 2002. Aerobic rice (Han Dao): a new way of growing rice in water-short areas. Pages 175181 in Proceedings of the 12th International Soil Conservation Organization Conference. Beijing, China Tsinghua University Press.Google Scholar
Brewer, C. E. and Oliver, L. R. 2007. Reducing weed seed rain with late-season glyphosate applications. Weed Technol. 21:753758.Google Scholar
Counce, P. A., Keisling, T. C., and Mitchell, A. J. 2000. A uniform, objective, and adaptive system for expressing rice development. Crop Sci. 40:436443.Google Scholar
Juraimi, A. S., Najib, M. Y. M., Begum, M., Anuar, A. R., Azmi, M., and Puteh, A. 2009. Critical period of weed competition in direct seeded rice under saturated and flooded conditions. Pertanika J. Trop. Agric. Sci. 32:305316.Google Scholar
Mahajan, G., Chauhan, B. S., and Johnson, D. E. 2010. Weed management in aerobic rice in northwestern Indo-Gangetic plains. Pages 297312 in Kang, M. S., ed. Water and Agricultural Sustainability Strategies. Boca Raton CRC.Google Scholar
Malik, M. S., Burgos, N. R., and Talbert, R. E. 2010. Confirmation and control of propanil-resistant and quinclorac-resistant barnyardgrass (Echinochloa crus-galli) in rice. Weed Technol. 24:226233.Google Scholar
McCauley, G. N. 1990. Sprinkler vs. flooded irrigation in traditional rice production regions of southeast Texas. Agron. J. 82:677683.Google Scholar
[NASS] National Agricultural Statistical Service. 2010. Crops and Stocks Report. http://www.nass.usda.gov/Statistics_by_State/Arkansas/Publications/Crop_Releases/annsum09.pdf. Accessed: April 18, 2011.Google Scholar
Norris, R. F. 2003. Echinochloa crus-galli (barnyardgrass) seed rain under irrigated conditions. Asp. Appl. Biol. 69:163170.Google Scholar
Norsworthy, J. K., Bangarwa, S. K., Scott, R. C., Still, J., and Griffith, G. M. 2010. Use of propanil and quinclorac tank mixtures for broadleaf weed control on rice (Oryza sativa) levees. Crop Prot. 29:255259.Google Scholar
Norsworthy, J. K., Burgos, N. R., Scott, R. C., and Smith, K. L. 2007. Consultant perspectives on weed management needs in Arkansas rice. Weed Technol. 21:832839.Google Scholar
Norsworthy, J. K., Griffith, G. M., and Scott, R. C. 2008. Imazethapyr use with and without clomazone for weed control in furrow-irrigated, imidazolinone-tolerant rice. Weed Technol. 22:217221.Google Scholar
Norsworthy, J. K., Scott, R., Smith, K., Still, J., Estorninos, L. E. Jr., and Bangarwa, S. 2009. Confirmation and management of clomazone-resistant barnyardgrass in rice. Proc. South. Weed Sci. Soc. 62:210.Google Scholar
Norsworthy, J. K., Scott, R. C., Bangarwa, S. K., Griffith, G. M., Wilson, M. J., and McCelland, M. 2011. Weed management in a furrow-irrigated imidazolinone-resistant hybrid rice production system. Weed Technol. 25:2529.Google Scholar
Ottis, B. V., Talbert, R. E., Malik, M. S., and Ellis, A. T. 2003. Rice weed control with penoxsulam (Grasp). B. R. Wells Rice Research Studies. http://arkansasagnews.uark.edu/517-19.pdf. Accessed: April 19, 2011.Google Scholar
Patel, D. P., Das, A., Munda, G. C., Ghosh, P. K., Bordoloi, J. S., and Kumar, M. 2010. Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem. Agric. Wat. Manage. 97:12691276.Google Scholar
Singh, S., Bhushan, L., Ladha, J. K., Gupta, R. K., Rao, A. N., and Sivaprasad, B. 2006. Weed management in dry-seeded rice (Oryza sativa) cultivated in the furrow-irrigated raised-bed planting system. Crop Prot. 25:487495.Google Scholar
Singh, Y., Singh, V. P., Chauhan, B., Orr, A., Mortimer, A. M., Johnson, D. E., and Hardy, B., eds. 2008. Direct Seeding of Rice and Weed Management in the Irrigated Rice–Wheat Cropping System of the Indo-Gangetic Plains. Los Banos (Phillippines) International Rice Research Institute, and Pantnagar (India): Directorate of Experimental Station, G. B. Pant University of Agriculture and Technology. 272 p.Google Scholar
Slaton, N. A., ed. 2001. Rice Production Handbook. Arkansas Cooperative Extension Service Misc. Publ. 192. Little Rock, AR University of Arkansas. 126 p.Google Scholar
Stephenson, D. O., Wilson, C. E. Jr., Tacker, P., and Lancaster, S. W. 2007. Determining the potential of furrow-irrigated rice using a 3- and 5-day irrigation schedule in a rice-production system. B. R. Wells Rice Research Studies. http://arkansasagnews.uark.edu/560-26.pdf. Accessed: April 20, 2011.Google Scholar
Street, J. E. and Mueller, T. C. 1993. Rice (Oryza sativa) weed control with soil applications of quinclorac. Weed Technol. 7:600604.Google Scholar
Tacker, P. 2007. Rice irrigation—water management for water, labor, and cost savings. B. R. Wells Rice Research Studies. http://arkansasagnews.uark.edu/560-27.pdf. Accessed: April 20, 2011.Google Scholar
Tracy, P. W., Sims, B. D., Hefner, S. G., and Cairns, J. P. 1993. Guidelines for producing rice using furrow irrigation. http://extension.missouri.edu/publications/DisplayPub.aspx?P=G4361. Accessed: April 18, 2011.Google Scholar
Vories, E. D., Counce, P. A., and Keisling, T. C. 2002. Comparison of flooded and furrow-irrigated rice on clay. Irrigation Sci. 21:139144.Google Scholar
Wilson, C. E. Jr., Runsick, S. K., and Mazzanti, R. 2010. Trends in Arkansas Rice Production. Arkansas Agricultural Extension Service Research Series 581. http://arkansasagnews.uark.edu/581-1.pdf. Accessed: April 18, 2011.Google Scholar