Article contents
Characterization of Waterhemp (Amaranthus tuberculatus) × Smooth Pigweed (A. hybridus) F1 Hybrids
Published online by Cambridge University Press: 20 January 2017
Abstract
In the state of Illinois, waterhemp and smooth pigweed are among the worst agricultural weeds. Previous research shows high potential for hybridization between these two species. However, the actual occurrence of hybrids in natural settings is still uncertain. Morphological similarity between hybrids and waterhemp makes field surveys of hybrids difficult to conduct. The main purpose of this study was to characterize the morphology of waterhemp × smooth pigweed F1 hybrids, emphasizing evaluation of characters that may allow for hybrid discrimination in field Amaranthus communities. Concurrently, the study characterized hybrid reproductive fitness, chromosome number, and DNA content. To accomplish this, hybrids were obtained from field crosses. A species-specific polymorphism in the ALS gene was used to verify hybrid identity. Significant differences (α = 0.05) between hybrids and individuals of the parental species were observed for five staminate and five carpellate characters. Of these, five characters differentiated hybrids from waterhemp. However, clustering analyses using these characters indicated that morphological differences were not reliable enough, by themselves, for unambiguous hybrid identification. Also, hybrid homoploidy (2n = 32) with respect to parental species excluded chromosome counts in hybridity determinations. However, DNA content analysis may be used for such purpose. Hybrids had an average of 1.21 pg of DNA per 2C nucleus, a value intermediate to that of parental species. Hybrids produced 3.3 or 0.7% the seed output of parental and sibling waterhemp individuals, respectively. Percent micropollen in hybrids was 95-times greater than in parental species. Hybrid sterility appears to be the most reliable feature for hybrid discrimination when conducting field surveys. However, molecular and cytogenetic analyses as employed in this study may be desired for ultimate identity corroboration.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Weed Science Society of America
References
Literature Cited
- 7
- Cited by