Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T06:27:06.006Z Has data issue: false hasContentIssue false

Benchmark Study: I. Introduction, Weed Population, and Management Trends from the Benchmark Survey 2010

Published online by Cambridge University Press:  20 January 2017

Joby M. Prince
Affiliation:
Mississippi State University, Mississippi State, MS 39762
David R. Shaw*
Affiliation:
Mississippi State University, Mississippi State, MS 39762
Wade A. Givens
Affiliation:
Mississippi State University, Mississippi State, MS 39762
Micheal D. K. Owen
Affiliation:
Iowa State University, Ames, IA 50011
Stephen C. Weller
Affiliation:
Purdue University, West Lafayette, IN 47907
Bryan G. Young
Affiliation:
Southern Illinois University, Carbondale, IL 62901
Robert G. Wilson
Affiliation:
University of Nebraska, Scotts Bluff, NE 69361
David L. Jordan
Affiliation:
North Carolina State University, Raleigh, NC 27695
*
Corresponding author's E-mail: [email protected]

Abstract

Almost 1,650 corn, cotton, and soybean growers in 22 states participated in a 2010 telephone survey to determine their attitudes with regard to which weed species were most problematic in glyphosate-resistant (GR) crop production systems for corn, cotton, and soybean. The survey is a follow-up to a previous 2005 to 2006 survey that utilized a smaller set of growers from fewer states. In general, growers continued to estimate weed populations as low and few challenges have been created following adoption of GR cropping systems. Pigweed and foxtail species were dominant overall, whereas other species were more commodity and state specific. Corn, cotton, and soybean growers cited velvetleaf, annual morningglory, and waterhemp, respectively, as predominant weeds. Growers in the South region were more likely to report pigweed and waterhemp (Amaranthus spp.), whereas growers in the East and West reported horseweed. When growers were asked with which GR weeds they had experienced personally, horseweed was reported in all regions, but growers in the South more frequently reported pigweed, whereas growers in the East and West regions more frequently reported waterhemp. Comparisons with the previous 2005 survey indicated that more growers believed they were experiencing GR weeds and were more aware of specific examples in their state. In particular, the Amaranthus complex was of greatest concern in continuously cropped soybean and cotton.

En 2010, casi 1,650 productores de maíz, algodón y soya en 22 estados participaron en una encuesta telefónica para determinar sus actitudes en referencia a qué tipo de malezas fueron las más problemáticas en los sistemas de producción de cultivos resistentes a glyphosate para maíz, algodón y soya resistentes a este herbicida. Esta encuesta es el seguimiento de otra realizada en 2005–2006, la cual utilizó un grupo menor de productores en y se realizó en menos estados. En general, los productores siguieron estimando las poblaciones de malezas como bajas y pocos retos han sido creados después de la adopción de sistemas de cultivos resistentes a glyphosate. En general, las especies de los géneros Amaranthus y Setaria fueron las dominantes, mientras otras especies fueron más específicas de acuerdo al cultivo o al estado. Los productores de maíz, algodón y soya mencionaron Abutilon theophrasti, especies anuales del género Ipomoea y Amaranthus tuberculatus, respectivamente, como malezas predominantes. Los productores en la región sur reportaron Amarantus spp. con mayor frecuencia, en tanto que los agricultores de las regiones este y oeste reportaron Conyza canadensis. Cuando se les preguntó a los agricultores con cuáles malezas resistentes a glyphosate habían tenido experiencia personalmente, Conyza canadensis se reportó en todas las regiones, pero los agricultores en el sur reportaron Amaranthus más frecuentemente, mientras los productores de las regiones este y oeste reportaron más frecuentemente A. tuberculatus. Las comparaciones con la encuesta previa de 2005 indicaron que más agricultores creyeron haber experimentado una mayor incidencia de malezas resistentes a glyphosate y sabían de más ejemplos específicos en su estado. Particularmente, el complejo Amaranthus fue una de las mayores preocupaciones en soya y algodón en cultivo continuo.

Type
Education/Extension
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Conover, W. J. 1999. Practical Nonparametric Statistics. 3rd ed. New York John Wiley and Sons. 592 p.Google Scholar
Culpepper, A. S. 2006. Glyphosate-induced weed shifts. Weed Technol. 20:277281.Google Scholar
Gibson, K. D., Johnson, W. G., and Hillger, D. E. 2005. Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol. 19:10651070.Google Scholar
Givens, W. A., Shaw, D. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M. D. K., and Jordan, D. 2009a. A grower survey of herbicide use patterns in glyphosate-resistant cropping systems. Weed Technol. 23:156161.Google Scholar
Givens, W. A., Shaw, D. R., Kruger, G. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M. D. K., and Jordan, D. 2009b. Survey of tillage trends following the adoption of glyphosate-resistant crops. Weed Technol. 23:150155.Google Scholar
Givens, W. A., Shaw, D. R., and Newman, M. E. 2011. Benchmark study on glyphosate-resistant cropping systems in the USA. III. Grower awareness, information sources, experiences, and management practices regarding glyphosate-resistant weeds. Pest Manag. Sci. 67:758770.Google Scholar
Gressel, J. and Segel, L. A. 1990. Modeling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4:186198.Google Scholar
Heap, I. 2011. The International Survey of Herbicide-Resistant Weeds. http://www.weedscience.com. Accessed: October 22, 2011.Google Scholar
James, C. 2009. Global Status of Commercialized Biotech/GM Crops: 2009. ISAAA Brief No. 41. Ithaca, NY ISAAA. http://www.isaaa.org/Resources/publications/briefs/41/default.asp. Accessed: October 11, 2010.Google Scholar
Johnson, W. G., Owen, M. D. K., Kruger, G. R., Young, B. G., Shaw, D. R., Wilson, R. G., Wilcut, J. W., Jordan, D. L., and Weller, S. C. 2009. U.S. farmer awareness of glyphosate-resistant weeds and resistance management strategies. Weed Technol. 23:308312.Google Scholar
Kruger, G. R., Johnson, W. G., Weller, S. C., et al. 2009. U.S. grower views on problematic weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol. 23:162166.Google Scholar
Price, A. J., Balkcom, K. S., Culpepper, S. A., Kelton, J. A., Nichols, R. L., and Schomberg, H. 2011. Glyphosate-resistant Palmer amaranth: a threat to conservation tillage. J. Soil Water Conserv. 66:265275.Google Scholar
Shaw, D. R., Givens, W. A., Farno, L. A., et al. 2009. Using a grower survey to assess the benefits and challenges of glyphosate-resistant cropping systems for weed management in U.S. corn, cotton, and soybean. Weed Technol. 23:134149.Google Scholar
Webster, T. M. and MacDonald, G. E. 2001. A survey of weeds in various crops in Georgia. Weed Technol. 15:771790.Google Scholar