Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T23:51:26.779Z Has data issue: false hasContentIssue false

Behavior of Dinitroaniline Herbicides in Soils

Published online by Cambridge University Press:  12 June 2017

Jerome B. Weber*
Affiliation:
Crop Sci. Dep., N.C. State Univ., Raleigh, NC 27695

Abstract

The behavior and dissipation of 26 dinitroaniline herbicides in soils are reviewed. Some of the compounds also are referred to as dinitrotoluidines, -benzen(e)amines, -benzenediamines, -cumidines, -benzenesulfonamides, -acetophenones, and sulfonylsulfilimines. All dinitroanilines are sorbed to soil particles, particularly to organic or humic substances, and are nearly immobile in soils. Soil K values range from 7 to 117 and KOC values range from 80 to 471 000. Compounds with vapor pressures greater than 50 × 10-6 mm of Hg at ambient temperatures were reported to volatilize and diffuse through, and out of, the soil in significant amounts, depending on temperature and moisture conditions. Greater losses occurred from warm, moist soils than from cool, dry soils. Photodecomposition of dinitroanilines on soil surfaces was low but occurred when the chemicals were present in the vapor state or in aqueous solutions. Bioavailability of the chemicals decreased as organic matter contents of the soils increased. Dinitroaniline herbicides were degraded primarily by soil microorganisms, and fungi were the major organisms involved. Degradation proceeded faster under anaerobic conditions than under aerobic conditions and faster under warm, moist conditions than under cool, dry conditions. Half-life values for dinitroanilines ranged from 7 to 27 days under anaerobic conditions and from 19 to 132 days under aerobic conditions. The chemicals did not affect most soil microflora; and any significant effects reported were of short duration.

Type
Symposium
Copyright
Copyright © 1990 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Adams, R. S. Jr. 1973. Factors influencing soil adsorption and bioactivity of pesticides. Res. Rev. 47:154.Google ScholarPubMed
2. Anderson, J. L., Balogh, J. C., and Waggoner, M. 1988. Soil Conservation Service Manual: Development of Standards and Specifications for Nutrient and Pesticide Management. U.S. Dep. Agric., Soil Conserv. Serv., St. Paul, MN.Google Scholar
3. Anderson, W. P., Richards, A. B., and Whitworth, J. W. 1968. Leaching of trifluralin, benefin and nitralin in soil columns. Weed Sci. 16:165169.Google Scholar
4. Anonymous. 1979. Herbicide Handbook, 4th Edition. Weed Sci. Soc. of Am., Champaign, IL.Google Scholar
5. Anonymous. 1983. Herbicide Handbook, 5th Edition. Weed Sci. Soc. of Am. Champaign, IL.Google Scholar
6. Barber, S. A. 1984. Soil Nutrient Bioavailability. John Wiley and Sons, New York.Google Scholar
7. Bardsley, C. E., Savage, K. E., and Walker, J. C. 1968. Trifluralin behavior in soil. II. Volatilization as influenced by concentration, time, soil moisture content, and placement. Agron. J. 60:8992.Google Scholar
8. Barlow, F., and Hadaway, A. B. 1952. Some factors affecting the availability of contact insecticides. Bull. Entomol. Res. 43:91100.Google Scholar
9. Beall, M. L., and Nash, R. G. 1969. Crop seedling uptake of DDT, dieldrin, endrin, and heptachlor from soils. Agron. J. 61:571575.CrossRefGoogle Scholar
10. Bode, L. E., Day, C. L., Gebhardt, M. R., and Goering, C. E. 1973. Mechanism of trifluralin diffusion in silt loam soil. Weed Sci. 21:480484.Google Scholar
11. Bode, L. E., Day, C. L., Gebhardt, M. R., and Goering, C. E. 1973. Prediction of trifluralin diffusion coefficients. Weed Sci. 21:485489.Google Scholar
12. Bohn, H. L., McNeal, B. L., and O'Conner, G. A. 1985. Soil Chemistry, 2nd ed. p. 159190. John Wiley & Sons, New York.Google Scholar
13. Breazeale, F. W., and Camper, N. D. 1970. Bacterial, fungal and actinomycete populations in soils receiving applications of 2,4-dichlorophenoxyacetic acid and trifluralin. Appl. Microbiol. 19:379380.Google Scholar
14. Brown, A.W.A. 1978. Ecology of Pesticides. p. 367383. John Wiley and Sons, Inc., New York.Google Scholar
15. Brown, R. F. 1975. Organic Chemistry. p. 461463. Wadsworth Publ. Co., Inc., Belmont, CA.Google Scholar
16. Carringer, R. D., Weber, J. B., and Monaco, T. J. 1975. Adsorption-desorption of selected pesticides by organic matter and montmorillonite. J. Agric. Food Chem. 23:568572.CrossRefGoogle ScholarPubMed
17. Carter, G. E., and Camper, N. D. 1975. Soil enrichment studies with trifluralin. Weed Sci. 23:7174.Google Scholar
18. Chandler, J. M., and Santelmann, P. W. 1968. Interactions of four herbicides with Rhizoctonia solani on seedling cotton. Weed Sci. 16:453456.CrossRefGoogle Scholar
19. Eshel, Y., and Katan, J. 1972. Effect of dinitroanilines on solanaceous vegetables and soil fungi Weed Sci. 20:243246.Google Scholar
20. Glasstone, S. 1965. Textbook of Physical Chemistry. p. 696698. D. Van Nostrand Co. Inc., New York.Google Scholar
21. Golab, T., and Althaus, W. A. 1975. Transformation of isopropalin in soil and plants. Weed Sci. 23:165171.Google Scholar
22. Golab, T., Bishop, C. E., Donoho, A. L., Manthey, J. A., and Zornes, L. L. 1975. Behavior of 14-C oryzalin in soil and plants. Pestic. Biochem. Physiol. 5:196204.Google Scholar
23. Grover, R. 1974. Adsorption and desorption of trifluralin, triallate, and diallate by various adsorbents. Weed Sci. 22:405408.Google Scholar
24. Grover, R., Smith, A. E., Shewchuk, S. R., Cessna, A. J., and Hunter, J. H. 1988. Fate of trifluralin and triallate applied as a mixture to a wheat field. J. Environ. Qual. 17:543550.Google Scholar
25. Gruzdev, G. S., Mozgovoi, A. F., and Kuz'mina, I. V. 1973. Effect of Treflan on biological activity of soil under sunflower. Ize.timiryazev. Sel.'-khoz. Akad. No. 4:136141. (Soils and Fert. 37:250).Google Scholar
26. Hamaker, J. W., and Thompson, J. M. 1972. Adsorption. p. 49143 in Goring, C.A.I. and Hamaker, J. W., ed. Organic Chemicals in the Soil Environment. Marcel Dekker, Inc., New York.Google Scholar
27. Hamdi, Y. A., and Tewfik, M. S. 1969. Effect of herbicide trifluralin on nitrogen fixation in Rhizobium and Azotobacter and nitrification. Acta Microbiol. Pol. Ser. B 1:5358.Google Scholar
28. Hamdi, Y. A., and Tewfik, M. S. 1969. Decomposition of the herbicide trifluralin by a Pseudomonad. Acta Microbiol. Pol. Ser. B 1:8384.Google ScholarPubMed
29. Harris, C. I. 1967. Movement of herbicides in soil. Weeds 15:214216.Google Scholar
30. Harrison, G. W., Weber, J. B., and Baird, J. V. 1976. Herbicide phytotoxicity as affected by selected properties of North Carolina soils. Weed Sci. 24:120126.CrossRefGoogle Scholar
31. Hartley, D., and Kidd, H., ed. 1988. The Agrochemicals Handbook, 2nd ed. The Royal Soc. Chem., Nottingham, England.Google Scholar
32. Harvey, R. G. 1974. Soil adsorption and volatility of dinitroaniline herbicides. Weed Sci. 22:120124.CrossRefGoogle Scholar
33. Helling, C. S. 1971. Pesticide mobility in soils, III. Influence of soil properties. Proc. Soil Sci. Soc. Am. 35:743748.Google Scholar
34. Helling, C. S. 1976. Chemical and physical properties of the dinitroaniline herbicides. Suppl. Proc. Northeast. Weed Sci. Soc. 30:4451.Google Scholar
35. Helling, C. S. 1976. Dinitroaniline herbicides in soils. J. Environ. Qual. 5:115.Google Scholar
36. Helling, C. S., and Krivonak, A. E., 1978. Biological characteristics of bound dinitroaniline herbicides in soils. J. Agric. Food Chem. 26:11641172.CrossRefGoogle Scholar
37. Hollingsworth, E. B. 1980. Volatility of trifluralin from field soil. Weed Sci. 28:224228.Google Scholar
38. Hollist, R. L., and Foy, C. L. 1971. Trifluralin interactions with soil constituents. Weed Sci. 19:1116.Google Scholar
39. Jacques, G. L., and Harvey, R. G. 1979. Adsorption and diffusion of dinitroaniline herbicides in soils. Weed Sci. 27:450455.Google Scholar
40. Jacques, G. L., and Harvey, R. G. 1979. Persistence of dinitroaniline herbicides in soil. Weed Sci. 27:660665.CrossRefGoogle Scholar
41. Jacques, G. L., and Harvey, R. G. 1979. Vapor adsorption and translocation of dinitroaniline herbicides in oats (Avena sativa) and peas (Pisum sativum). Weed Sci. 27:371374.Google Scholar
42. Jury, W. A., Focht, D. D., and Farmer, W. J. 1987. Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. J. Environ. Qual. 16:422428.Google Scholar
43. Kardos, L.T. 1958. Soil fixation of plant nutrients. p. 177199 in Bear, F.E., ed. Chemistry of the Soil. Reinhold Publ. Corp., New York.Google Scholar
44. Kaufman, D. D. 1976. Bound and conjugated pesticide residues. p. 110 in Kaufman, D. D., Still, G. E., Paulson, G. D., and Bandal, S. K., ed. Bound and Conjugated Pesticide Residues. Am. Chem. Soc. Symp. Ser. No. 29, Washington, DC.Google Scholar
45. Kearney, P. C., Plimmer, J. R., Williams, V. P., Klingebiel, U. I., Isensee, A. R., Laanio, T. L., Stolzenberg, G. E., and Zaylskie, R. G. 1974. Soil persistence and metabolism of N-Sec-butyl-4-tert-butyl-2,6-dinitroaniline. J. Agric. Food Chem. 22:856859.CrossRefGoogle ScholarPubMed
46. Kennedy, J. M., and Talbert, R. E. 1977. Comparative persistence of dinitroaniline type herbicides on the soil surface. Weed Sci. 25:373381.Google Scholar
47. Ketchersid, M. L., Bovey, R. W., and Merkle, M. G. 1969. The detection of trifluralin vapors in air. Weed Sci. 17:484485.CrossRefGoogle Scholar
48. Kipling, J. J. 1965. Adsorption from Solutions of Non-Electrolytes. Academic Press, New York.Google Scholar
49. Kust, C. A., and Struckmeyer, B. E. 1971. Effects of trifluralin on growth, nodulation and anatomy of soybeans. Weed Sci. 19:147152.Google Scholar
50. Laanio, T. L., Kearney, P. C., and Kaufman, D. D. 1973. Microbial metabolism of dinitramine. Pestic. Biochem. Physiol. 3:271277.Google Scholar
51. LeFleur, K. S., McCaskill, W. R., and Gale, G.T. Jr. 1978. Trifluralin persistence in Congaree soil. Soil Sci. 126:285289.Google Scholar
52. Lambert, S. M. 1967. Functional relationship between sorption in soil and chemical structure. J. Agric. Food Chem. 15:572576.Google Scholar
53. Lambert, S. M. 1968. Omega (Ω), a useful index of soil sorption equilibria. J. Agric. Food Chem. 16:340343.Google Scholar
54. Leitis, E., and Crosby, D. G. 1974. Photodecomposition of trifluralin. J. Agric. Food Chem. 22:842848.Google Scholar
55. McCall, P. J., Swann, R. L., and Laskowski, D. A. 1983. Partition models for equilibrium distributions of chemicals in environmental compartments. p. 105123 in Swarm, R. L. and Eschenroeder, A., ed. Fate of Chemicals in the Environment. Am. Chem. Soc., Washington, DC.Google Scholar
56. Messersmith, C. G., Burnside, O. C., and Lavy, T. L. 1971. Biological and non-biological dissipation of trifluralin from soil. Weed Sci. 19:285290.Google Scholar
57. Nash, R. G. 1983. Determining environmental fate of pesticides with microagroecosystems. Res. Rev. 85:199215.Google Scholar
58. Nelson, D. W., and Sommers, L. E. 1982. Total carbon, organic carbon, and organic matter. p. 539579 in Page, A. L., ed. Methods of Soil Analysis, 2nd ed. No. 9 (Part 2), Agron. Ser. Am. Soc. Agron., Inc., Madison, WI.Google Scholar
59. Newsom, H. C., and Woods, W. G. 1973. Photolysis of the herbicide dinitramine (N 3,N 3-diethyl-2,4- dinitro-6-trifluoromethyl-m-phenylene diamine). J. Agric. Food Chem. 21:598601.Google Scholar
60. Nilles, G. P., and Zabik, M. J. 1974. Photochemistry of bioactive compounds. Multiphase photodegradation of basalin. J. Agric. Food Chem. 22:684688.Google Scholar
61. Nofzinger, D. L., and Hornsby, A. G. 1985. Chemical Movement in Soil: IBM PC User's Guide. Fla. Coop. Ext. Serv. Circ. 654.Google Scholar
62. Parka, S. J., and Tepe, J. B. 1969. The disappearance of trifluralin from field soils. Weed Sci. 17:119122.Google Scholar
63. Parochetti, J. V., and Hein, E. R. 1973. Volatility and photodecomposition of trifluralin, benefin, and nitralin. Weed Sci. 21:469473.Google Scholar
64. Parochetti, J. V., Dec, G. W. Jr., and Burt, G. W. 1976. Volatility of eleven dinitroaniline herbicides. Weed Sci. 24:529532.Google Scholar
65. Parr, J. F., and Smith, S. 1973. Degradation of trifluralin under laboratory conditions and soil anaerobiosis. Soil Sci. 115:5563.CrossRefGoogle Scholar
66. Peter, D. J., and Weber, J. B. 1985. Adsorption and efficacy of trifluralin and butralin as influenced by soil properties. Weed Sci. 33:861867.Google Scholar
67. Peterson, J. R., Adams, R. S. Jr., and Cutkamp, L. K. 1971. Soil properties influencing DDT bioactivity. Proc. Soil Sci. Soc. Am. 35:7278.Google Scholar
68. Plimmer, J. R., and Klingebiel, U. I. 1974. Photochemistry of N-sec-butyl-4-tert-butyl-2,6-dinitroaniline. J. Agric. Food Chem. 22:689693.Google Scholar
69. Probst, G. W., Golab, T., and Wright, W. L. 1975. Dinitroanilines. p. 453500 in Kearney, P. C. and Kaufman, D. D., ed. Herbicides: Chemistry, Degradation, and Mode of Action, 2nd ed., Vol. 1. Marcel Dekker, Inc., New York.Google Scholar
70. Probst, G. W., Golab, T., Herberg, R. J., Holzer, F. J., Parka, S. J., Van Der Schans, C., and Tepe, J. B. 1967. Fate of trifluralin in soils and plants. J. Agric. Food Chem. 15:592599.CrossRefGoogle Scholar
71. Quayle, O. R. 1953. The parachors of organic compounds. Chem. Rev. 53:439586.Google Scholar
72. Rankov, V. 1970. The effect of certain herbicides on soil cellulose-decomposing activity. Pochv. Agrokhim. 5:7380. (Weed Abstr. 21:1113).Google Scholar
73. Rodriguez-Kabana, R., Curl, E. A., and Funderburk, H. H. Jr. 1969. Effect of trifluralin on growth of Sclerotium rolfsii in liquid culture and soil. Phytopathology 59:228232.Google Scholar
74. Savage, K. E. 1973. Nitralin and trifluralin persistence in soil. Weed Sci. 21:285288.Google Scholar
75. Savage, K. E. 1978. Persistence of several dinitroaniline herbicides as affected by soil moisture. Weed Sci. 26:465:471.Google Scholar
76. Savage, K. E., and Jordan, T. N. 1980. Persistence of three dinitroaniline herbicides on the soil surface. Weed Sci. 28:105110.CrossRefGoogle Scholar
77. Scott, D. C., and Weber, J. B. 1967. Herbicide phytotoxicity as influenced by adsorption. Soil Sci. 104:151158.Google Scholar
78. Scott, H. D., and Phillips, R. E. 1972. Diffusion of selected herbicides in soil. Proc. Soil Sci. Soc. Am. 36:714719.Google Scholar
79. Sheets, T. J., Crafts, A. S., and Drever, H. R. 1962. Influence of soil properties on the phytotoxicities of the s-triazine herbicides. J. Agric. Food Chem. 10:458462.Google Scholar
80. Smith, C. N., Leonard, R. A., Langdale, G. W., and Bailey, G. W. 1978. Transport of agricultural chemicals from small upland Piedmont watersheds. U.S. Environ. Prot. Agency, Athens, GA and U.S. Dep. Agric., Watkinsville, GA. Final Report on Interagency Agreement No. D-6-0381. Publ. No. EPA 600/3-78-056.Google Scholar
81. Smith, R. A., Belles, W. S., Shen, K. W., and Woods, W. G. 1973. The degradation of dinitramine (N 3,N 3-diethyl 2,4-dinitro-6-trifluoromethyl-m-phenylenediamine) in soil. Pestic. Biochem. Physiol. 3:278288.CrossRefGoogle Scholar
82. Soderquist, C. J., Crosby, D. G., Moilanen, K. W., Seiber, J. N., and Woodrow, J. E. 1975. Occurrence of trifluralin and its photo-products in air. J. Agric. Food Chem. 23:304309.Google Scholar
83. Tang, A., Curl, E. A., and Rodriguez-Kabana, R. 1970. Effect of trifluralin on inoculum density and spore germination of Fusarium oxysporum f. sp. vasinfectum in soil. Phytopathology 60:10821086.Google Scholar
84. Teasdale, J. R., Harvey, R. G., and Hagedorn, D. J. 1979. Mechanism for the suppression of pea (Pisum sativum) root rot by dinitroaniline herbicides. Weed Sci. 27:195201.Google Scholar
85. Thorneburg, R. P., and Tweedy, J. A. 1973. A rapid procedure to evaluate the effect of pesticides on nitrification. Weed Sci. 21:397399.Google Scholar
86. Upchurch, R. P., and Mason, D. D. 1962. The influence of soil organic matter on the phytotoxicity of herbicides. Weeds 10:914.Google Scholar
87. Van Bladel, R., and Moreale, A. 1977. Adsorption of herbicide-derived p-chloroaniline residues in soils: A predictive equation. J. Soil Sci. 28:93102.Google Scholar
88. Walker, A., and Bond, W. 1977. Persistence of the herbicide AC-92553, N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine, in soils. Pestic. Sci. 8:359365.Google Scholar
89. Wauchope, R. D. 1978. The pesticide content of surface water draining from agricultural fields–a review. J. Environ. Qual. 7:459472.Google Scholar
90. Wauchope, R. D. 1988. Pesticide data base. USDA-ARS Interim Pesticide Properties Database, Version 1.0. Tifton, GA.Google Scholar
91. Weber, J. B. 1972. Interactions of organic pesticides with particulate matter in aquatic and soil systems. p. 55120. in Gould, R. F., ed. Fate of Organic Pesticides in the Aquatic Environment. Am. Chem. Soc., Washington, DC.Google Scholar
92. Weber, J. B. 1978. History, comparative properties and behavior of trifluralin and other dinitroaniline herbicides. Proc. Beltwide Cotton Prod. Res. Conf., p. 132139, Dallas, TX, Jan. 9–11.Google Scholar
93. Weber, J. B. 1987. Physical/chemical interactions of herbicides with soil. Proc. Calif. Weed Conf. 39:96109.Google Scholar
94. Weber, J. B. 1988. Pesticide dissipation in soils as a model for xenobiotic behavior. Proc. Int. Atomic Energy Agency IAEA-SM-297:4560.Google Scholar
95. Weber, J. B., and Miller, C. T. 1989. Organic chemical movement over and through soil. p. 305334 in Reactions and Movement of Organic Chemicals in Soils. Special Publ. No. 22, Soil Sci. Soc. Am., Inc., Madison, WI.Google Scholar
96. Weber, J. B., and Monaco, T. J. 1972. Review of the chemical and physical properties of the substituted dinitroaniline herbicides. Proc. South. Weed Sci. Soc. 25:3137.Google Scholar
97. Weber, J. B., and Weed, S. B. 1974. Effects of soil on the biological activity of pesticides. p. 223255 in Guenzi, W. D., ed. Pesticides in Soil and Water. Soil Sci. Soc. Am., Inc., Madison, WI.Google Scholar
98. Weber, J. B., Best, J. A., and Witt, W. W. 1974. Herbicide residues and weed species shifts on modified-soil field plots. Weed Sci. 22:427433.CrossRefGoogle Scholar
99. Weber, J. B., Shea, P. J., and Strek, H. J. 1980. An evaluation of non-point sources of pesticide pollution in runoff. p. 6998 in Over-cash, M. R. and Davison, J. M., ed. Environmental Impact at Nonpoint Source Pollution. Ann Arbor Sci. Publ., Inc., Ann Arbor, MI.Google Scholar
100. Weber, J. B., Tucker, M. R., and Isaac, R. A. 1987. Making herbicide rate recommendations based on soil tests. Weed Technol. 1:4145.Google Scholar
101. Weber, J. B., Weed, S. B., and Waldrep, T. W. 1974. Effect of soil constituents on herbicide activity in modified-soil field plots. Weed Sci. 22:454459.Google Scholar
102. Weed, S. B., and Weber, J. B. 1974. Pesticide-organic matter interactions. p. 3966 in Guenzi, W. D., ed. Pesticides in Soil and Water. Soil Sci. Soc. of Am., Inc., Madison, WI.Google Scholar
103. Wheeler, W. B., Stratton, G. D., Twilley, R. R., Ou, L. T., Carlson, D. A., and Davidson, J. M. 1979. Trifluralin degradation and binding in soil. J. Agric. Food Chem. 27:702706.Google Scholar
104. Woodrow, J. E., Crosby, D. G., Mast, T., Moilanen, K. W., and Seiber, J. N. 1978. Rates of transformation of trifluralin and parathion vapors in air. J. Agric. Food Chem. 26:13121316.Google Scholar
105. Zimdahl, R. L., and Gwynn, S. M. 1977. Soil degradation of three dinitroanilines. Weed Sci. 25:247251.CrossRefGoogle Scholar