Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T22:43:38.607Z Has data issue: false hasContentIssue false

Assessing and Visualizing Agricultural Management Practices: A Multivariable Hands-On Approach for Education and Extension

Published online by Cambridge University Press:  20 January 2017

Richard G. Smith*
Affiliation:
Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824
Tara Pisani Gareau
Affiliation:
Biology Department, Boston College, Chestnut Hill, MA 02467
David A. Mortensen
Affiliation:
Department of Crop and Soil Sciences, The Pennsylvania State University, University Park, PA 16802
William S. Curran
Affiliation:
Department of Crop and Soil Sciences, The Pennsylvania State University, University Park, PA 16802
Mary E. Barbercheck
Affiliation:
Department of Entomology, The Pennsylvania State University, University Park, PA 16802
*
Corresponding author's E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Agroecosystems are inherently complex, and practices aimed at managing one component of the system can have unintended consequences for other components of the system. Management decisions, therefore, can be improved by assessing and understanding the multivariate nature of agricultural systems and the multifunctional character of particular agricultural management practices. The act of simultaneously assessing and evaluating multiple characteristics or functions in agriculture also can be a valuable education and extension activity, because it draws on active and experiential methods of learning and because the process effectively reveals important functions and tradeoffs associated with agroecosystems and their management. Here we introduce a tool (the spider plot) and present a case-study exercise in which we used this tool to evaluate the multiple characteristics and functions of different cover crops within a field day workshop format. We also provide examples of how this approach could be used to assess other management practices or properties of agroecosystems and communicate multivariate concepts within a weed science classroom or extension environment.

Los agro-ecosistemas son intrínsicamente complejos y las prácticas enfocadas al manejo de uno de los componentes del sistema pueden tener consecuencias no intencionadas en otros de los componentes. Por lo tanto, las decisiones de manejo, pueden ser mejoradas mediante la evaluación y comprensión de la naturaleza multi-variable de los sistemas agrícolas y el carácter multifuncional de prácticas específicas de manejo agrícola. El acto de medir y evaluar simultáneamente las múltiples características o funciones en la agricultura puede también ser una valiosa actividad educativa y de extensión, ya que se deriva de métodos activos y experienciales de aprendizaje y debido a que el proceso revela efectivamente funciones importantes, así como también, ventajas y desventajas asociadas con los agro-ecosistemas y sus manejos. Aquí presentamos una herramienta (gráfica de araña) y un ejercicio de estudio de caso en el cual usamos esta herramienta para evaluar las múltiples características y funciones de los diferentes cultivos de cobertura, en el formato de un taller-día de campo. También proporcionamos ejemplos de cómo este enfoque puede usarse para evaluar otras prácticas de manejo o propiedades de agro-ecosistemas y para comunicar conceptos multi-variables en una clase de ciencias de la maleza o en un escenario de extensión.

Type
Education/Extension
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

References

Literature Cited

Andrews, S. S., Karlen, D. L., and Mitchell, J. P. 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 90:2545.Google Scholar
Brady, N. C. and Weil, R. R. 2002. The Nature and Properties of Soils. 13th ed. Upper Saddle River, NJ Prentice Hall. 960 p.Google Scholar
Chambers, J., Cleveland, W., Kleiner, B., and Tukey, P. 1983. Graphical Methods for Data Analysis. Monterey, CA Wadsworth. 395 p.Google Scholar
Davis, A. S., Renner, K. A., and Gross, K. L. 2005. Weed seedbank and community shifts in a long-term cropping systems experiment. Weed Sci. 53:296306.Google Scholar
Ebert-May, D., Batzli, J., and Lim, H. 2003. Disciplinary research strategies for assessment of learning. BioScience 53:12211228.Google Scholar
Fageria, N. K., Baligar, V. C., and Bailey, B. A. 2005. Role of cover crops in improving soil and row crop productivity. Commun. Soil Sci. Plant Anal. 36:27332757.Google Scholar
Fiedler, A. K., Landis, D. A., and Wratten, S. D. 2008. Maximizing ecosystem services from conservation biological control: the role of habitat management. Biol. Control 45:254271.Google Scholar
Firbank, L. G., Perry, J. N., Squire, G. R., et al. 2003. The Implications of Spring-Sown Genetically Modified Herbicide-Tolerant Crops for Farmland Biodiversity. http://www.rothamsted.ac.uk/pie/sadie/reprints/firbank_et_al_commentary.pdf. Accessed: April 11, 2011.Google Scholar
Foley, J. A., DeFries, R., Asner, G. P., et al. 2005. Global consequences of land use. Science 309:570574.Google Scholar
Gallagher, R. S., Luschei, E. C., Gallandt, E., and DiTommaso, A. 2007. Experiential learning activities in the weed science classroom. Weed Technol. 21:255261.Google Scholar
Gareau, T. L. P., Smith, R. G., Barbercheck, M. E., and Mortensen, D. A. 2010. Spider Plots: A Tool for Participatory Extension Learning. J. Extension 48(5):Article 5TOT8. http://www.joe.org/joe/2010october/pdf/JOE_v48_5tt8.pdf?. Accessed: April 11, 2011.Google Scholar
Grandy, A. S. and Robertson, G. P. 2007. Land-use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems 10:5873.Google Scholar
Hampton, R. O. and Weber, K. A. 1983. Pea streak and alfalfa mosaic-viruses in alfalfa-reservoir of viruses infectious to Pisum peas. Plant Dis. 67:308310.Google Scholar
Isensee, A. R. and Sadeghi, A. M. 1993. Impact of tillage practice on runoff and pesticide transport. J. Soil Water Conserv. 48:523527.Google Scholar
Jongmans, A. G., Pulleman, M. M., Balabane, M., van Oort, F., and Marinissen, J. C. Y. 2003. Soil structure and characteristics of organic matter in two orchards differing in earthworm activity. Appl. Soil Ecol. 24:219232.Google Scholar
Kelly, T. C., Lu, Y. C., and Teasdale, J. R. 1996. Economic–environmental tradeoffs among alternative crop rotations. Agric. Ecosyst. Environ. 60:1728.Google Scholar
Knowles, M. 1990. The Adult Learner: A Neglected Species. 4th ed. Houston, TX Gulf Publishing. 293 p.Google Scholar
Lawrence, A. P. and Bowers, M. A. 2002. A test of the “hot” mustard extraction method of sampling earthworms. Soil Biol. Biochem. 34:549552.Google Scholar
Lu, Y. C., Teasdale, J. R., and Huang, W. Y. 2003. An economic and environmental tradeoff analysis of sustainable agriculture cropping systems. J. Sustain. Agric. 22:2541.Google Scholar
McGuire, A., Bryant, D., and Denison, R. 1998. Wheat yields, nitrogen uptake, and soil moisture following winter legume cover crop vs. fallow. Agron. J. 90:404410.Google Scholar
McNeal, A. P. and D'Avanzo, C. 1997. Introduction. Pages vxi. In McNeal, A. P., and D'Avanzo, C., eds. Student-Active Science: Models of Innovation in College Science Teaching. Orlando, FL Harcourt Brace and Co.Google Scholar
Menalled, F. D., Smith, R. G., Dauer, J. T., and Fox, T. B. 2007. Impact of agricultural management on carabid communities and weed seed predation. Agric. Ecosyst. Environ. 118:4954.Google Scholar
Mortensen, D. A., Egan, J. F., Smith, R. G., and Ryan, M. R. 2009. Unintended Consequences of Stacking Herbicide Tolerance Traits in Soybean. Pages 69 in 6th International IPM Symposium, Portland, OR: National Information System of the Regional IPM Centers. March 24–26, 2009. http://www.ipmcenters.org/ipmsymposium09/IPM%20Program%2009%20to%20print.pdf. Accessed: April 11, 2011.Google Scholar
Nelson, E., Mendoza, G., Regetz, J., et al. 2009. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 7:411.Google Scholar
Nicolardot, B., Recous, S., and Mary, B. 2001. Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C ∶ N ratio of the residues. Plant Soil 228:83103.Google Scholar
Ota, C., DiCarlo, C. F., Burts, D. C., Laird, R., and Gioe, C. 2006. Training and the Needs of Adult Learners. J. Extension [On-line]. 44(6):Article 6TOT5. http://www.joe.org/joe/2006december/tt5.php. Accessed: April 11, 2011.Google Scholar
Paul, E. A. and Robertson, G. P. 1989. Ecology and the agricultural sciences—a false dichotomy. Ecology 70:15941597.Google Scholar
Peterson, R. K. D. and Hulting, A. N. G. 2004. A comparative ecological risk assessment for herbicides used on spring wheat: the effect of glyphosate when used within a glyphosate-tolerant wheat system. Weed Sci. 52:834844.Google Scholar
Ryan, M. R., Smith, R. G., Mirsky, S. B., Mortensen, D. A., and Seidel, R. 2010. Management filters and species traits: weed community assembly in long-term organic and conventional systems. Weed Sci. 58:265277.Google Scholar
Sarrantonio, M. 1994. Northeast Cover Crop Handbook. Emmaus, PA Rodale Institute. 118 p.Google Scholar
Smith, R. G., McSwiney, C. P., Grandy, A. S., Suwanwaree, P., Snider, R. M., and Robertson, G. P. 2008. Diversity and abundance of earthworms across an agricultural land-use intensity gradient. Soil Tillage Res. 100:8388.Google Scholar
Smith, R. G., Menalled, F. D., and Robertson, G. P. 2007. Temporal yield variability under conventional and alternative management systems. Agron. J. 99:16291634.Google Scholar
Snapp, S. S., Swinton, S. M., Labarta, R., Mutch, D., Black, J. R., Leep, R., Nyiraneza, J., and O'Neil, K. 2005. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron. J. 97:322332.Google Scholar
Teasdale, J. R. 1996. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 9:475479.Google Scholar
ten Brink, B. J. E. 1991. The AMOEBA approach as a useful tool for establishing sustainable development. Pages 7187 in Kuik, O., and Verbruggen, H., eds. In Search of Indicators of Sustainable Development. Dordrecht, Netherlands Kluwer Academic Publishers.Google Scholar
Weltzien, E. and Christinck, A. 2008. Participatory breeding: developing improved and relevant crop varieties with farmers. Pages 211252 in Snapp, S. S., and Pound, B., eds. Agricultural Systems: Agroecology and Rural Innovation for Development. Burlington, MA Academic Press.Google Scholar
Wilke, B. J. and Snapp, S. S. 2008. Winter cover crops for local ecosystems: linking plant traits and ecosystem function. J. Sci. Food Agric. 88:551557.Google Scholar