Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T05:33:06.363Z Has data issue: false hasContentIssue false

Aminopyralid Soil Residues Affect Crop Rotation in North Dakota Soils

Published online by Cambridge University Press:  20 January 2017

Jonathan R. Mikkelson
Affiliation:
Plant Sciences Department, North Dakota State University, Fargo, ND 58105
Rodney G. Lym*
Affiliation:
Plant Sciences Department, North Dakota State University, Fargo, ND 58105
*
Corresponding author's E-mail: [email protected].

Abstract

Field experiments were established near Casselton and Fargo, ND, to evaluate the effect of aminopyralid soil residue on alfalfa, corn, soybean, and sunflower planted one or two growing seasons after treatment. At Fargo, ND, aminopyralid caused no injury or yield reduction to alfalfa, corn, and sunflower seeded 20 or 23 mo after treatment (MAT) in a silty clay soil. However, soybean yield was reduced when aminopyralid at 120 or 240 g ae ha−1 was fall- or spring-applied 20 or 23 mo before seeding. At Casselton, ND, aminopyralid injured alfalfa, soybean, and sunflower planted 8 and 11 MAT. Injury and yield reduction were less from treatments spring-applied than from those that were fall-applied. For example, aminopyralid at 120 g ha−1 applied in September caused 95, 94, and 100% injury to alfalfa, sunflower, and soybean, respectively, 8 MAT, whereas the same treatment applied in June caused 10, 8, and 44% injury 11 MAT. Aminopyralid at 120 g ha−1 continued to reduce soybean yield by an average of 45% at 20 MAT (fall-applied), but yield was similar to the control when aminopyralid was applied 23 mo before seeding (spring-applied). Warm soil with moderate moisture during the summer months appeared to be very important for degradation of aminopyralid. Corn was not affected by aminopyralid when seeded 8 or 11 MAT and appeared to be the best cropping option for land recently treated with aminopyralid. Aminopyralid applied at spot-treatment rates of 240 g ha−1 had long-term soil activity similar to picloram at 560 g ha−1.

Se establecieron experimentos de campo cerca de Casselton y Fargo, Dakota del Norte, para evaluar el efecto de los residuos de aminopyralid en el suelo en alfalfa, maíz, soya y girasol sembrados una o dos temporadas productivas posteriores al tratamiento. En Fargo, el aminopyralid no causó daño o reducción en el rendimiento a la alfalfa, maíz o girasol sembrados 20 ó 23 meses después del tratamiento (MAT) en suelo limo arcilloso. Sin embargo, el rendimiento de la soya se redujo cuando se aplicó aminopyralid a 120 ó 240 g ea ha−1 en otoño o en primavera, 20 ó 23 meses antes de la siembra. En Casselton, el aminopyralid dañó la alfalfa, la soya y el girasol sembrados 8 y 11 MAT. El daño y la reducción del rendimiento fueron menores en los tratamientos aplicados en primavera que en los del otoño. Por ejemplo, aminopyralid a 120 g ha−1 aplicado en septiembre causó 95, 94, y 100% de daño a la alfalfa, el girasol y la soya, respectivamente, 8 MAT, mientras que el mismo tratamiento aplicado en junio causó el 10, 8 y 44% de daño 11 MAT. El aminopyralid a 120 g ha−1 continuó disminuyendo el rendimiento de la soya en un promedio de 45%, 20 MAT, cuando se aplicó en otoño, pero el rendimiento fue similar al del testigo cuando se aplicó el mismo herbicida en primavera 23 meses antes de la siembra. La presencia de temperaturas cálidas y humedad moderada en el suelo durante los meses de verano, pareció ser un factor muy importante para la degradación del herbicida. Aminopyralid no afectó el maíz cuando se sembró 8 u 11 MAT y aparentemente este cultivo fue la mejor opción para suelos recientemente tratados con el herbicida. El aminopyralid aplicado en parches a dosis de 240 g ha−1 tuvo una actividad a largo plazo en el suelo similar al picloram a560 g ha−1.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2005. Aminopyralid technical bulletin. Dow AgroSciences Publication V45-313-001. Indianapolis, IN Dow AgroSciences. 19 p.Google Scholar
Carrithers, V. F., Burch, P. L., Kline, W. N., Masters, R. A., Nelson, J. A., Halstvedt, M. B., Troth, J. L., and Breuninger, J. M. 2005. Aminopyralid: a new reduced risk active ingredient for control of broadleaf invasive and noxious weeds. Proc. West. Soc. Weed Sci. 58:5960.Google Scholar
[EPA] Environmental Protection Agency. 2005. Environmental Fate and Ecological Risk Assessment for the Registration of Aminopyralid. http://www.epa.gov/opprd001/factsheets/aminopyralidEFEDRA.pdf. Accessed: March 28, 2010.Google Scholar
Grossmann, K. 2000. Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci. 5:506508.Google Scholar
Guenzi, W. D. and Beard, W. E. 1976. Picloram degradation in soils as influenced by soil water content and temperature. J. Environ. Qual. 5:189192.Google Scholar
Lym, R. G. and Messersmith, C. G. 1987. Leafy spurge control and herbicide residue from annual picloram and 2,4-D application. J. Range Manag. 40:194198.Google Scholar
Mahlum, B. J. and Kross, J. 2010. DU Says Loss of 250,000 CRP Acres Could Mean 100,000 Fewer Ducks. The Outdoor Wire. http://www.theoutdoorwire.com/story/1284710502rfw1hm5xppr. Accessed: September 27, 2010.Google Scholar
Mikkelson, J. R. 2010. Effect of Aminopyralid on Crop Rotations and Native Forbs. . Fargo, ND North Dakota State University. 63 p.Google Scholar
Pik, A. J., Peake, E., Strosher, M. T., and Hodgson, G. W. 1977. Fate of 3,6-dichloropicolinic in soils. J. Agric. Food Chem. 25:10541061.CrossRefGoogle ScholarPubMed
Samuel, L. W. 2007. Aminopyralid Effect on Canada Thistle (Cirsium arvense) and Native Plants in Western North Dakota. Ph.D Dissertation. Fargo, ND North Dakota State University. 92 p.Google Scholar
Scifres, C. J., Burnside, O. C., and McCarty, M. K. 1969. Movement and persistence of picloram in pasture soils of Nebraska. Weed Sci. 17:486488.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. 331, 333, 353, 362 p.Google Scholar
Shaw, R. H. and Newman, J. E. 1991. National Corn Handbook: Weather Stress in the Corn Crop. West Lafayette, IN Purdue University Cooperative Extension Service Bulletin NCH-18, http://www.ces.purdue.edu/extmedia/NCH/NCH-18.html. Accessed: March 30, 2010.Google Scholar
Thorsness, K. B. 1987. Clopyralid Persistence in Soil. . Fargo, ND North Dakota State University. 45 p.Google Scholar
[USDA-FSA] U.S. Department of Agriculture—Farm Service Agency. 2010. Conservation Reserve Program: Monthly CRP Acreage Report. http://content.fsa.usda.gov/crpstorpt/rmepegg/MEPEGGR1.HTM. Accessed: September 27, 2010.Google Scholar
Zollinger, R., McMullen, M., Knodel, J., Gray, J., Jantzi, D., Kimmet, G., Hagemeister, K., and Schmitt, C. 2009. Pesticide Use and Pest Management Practices in North Dakota 2008. Fargo, ND North Dakota State University Extension Service Bulletin W-1446.Google Scholar