Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T15:33:59.375Z Has data issue: false hasContentIssue false

Allyl Isothiocyanate and Metham Sodium as Methyl Bromide Alternatives for Weed Control in Plasticulture Tomato

Published online by Cambridge University Press:  20 January 2017

Pratap Devkota*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
*
Corresponding author's E-mail: [email protected].

Abstract

Isothiocyanates (ITCs) were evaluated as an alternative to methyl bromide (MeBr) for control of Palmer amaranth, large crabgrass, and yellow nutsedge; reduction of tuber density; and increase in marketable tomato yield in low density polyethylene (LDPE)-mulched tomato production. Allyl ITC was applied at 450, 600, and 750 kg ai ha−1; metham sodium (methyl ITC generator) was applied at 180, 270, and 360 kg ai ha−1; and MeBr plus chloropicrin (mixture of MeBr and chloropicrin at 67 : 33%, respectively) was applied at 390 kg ai ha−1. A nontreated weedy check was included for comparison. There was no injury to tomato plants following allyl ITC, metham sodium, or MeBr application. Allyl ITC at 750 kg ha−1 or metham sodium at 360 kg ha−1 controlled Palmer amaranth ≥ 79%, large crabgrass ≥ 76%, and yellow nutsedge ≥ 80% and was comparable to the weed control with MeBr. Highest rates of allyl ITC and metham sodium reduced yellow nutsedge tuber density (≤ 76 tubers m−2) comparable to the MeBr application. Total marketable tomato yield was ≥ 31.6 t ha−1 in plots treated with allyl ITC at 750 kg ha−1 or metham sodium at 360 kg ha−1. Marketable tomato yield from the highest rate of allyl ITC or metham sodium were similar to the yield (38.2 t ha−1) with MeBr treatment. Therefore, allyl ITC at 750 kg ha−1 and metham sodium at 360 kg ha−1 are effective alternatives to MeBr for Palmer amaranth, large crabgrass, and yellow nutsedge control in LDPE-mulched tomato.

Se evaluaron isothiocyanates (ITCs) como alternativa a methyl bromide (MeBr) para el control de Amaranthus palmeri, Digitaria sanguinalis, Cyperus esculentus, para la reducción de la densidad de tubérculos, y para el incremento en el rendimiento comercializable del tomate en producción de este cultivo en coberturas de polyethylene de baja densidad (LPDE). Se aplicó allyl ITC a 450, 600, y 750 kg ai ha−1; metham sodium (generador de methyl ITC) se aplicó a 180, 270, y 360 kg ai ha−1, y MeBr más chloropicrin (mezcla de MeBr y chloropicrin a 67:33%, respectivamente) se aplicó a 390 kg ai ha−1. Un testigo no-tratado con malezas se incluyó para fines de comparación. No hubo daño en las plantas de tomate después de las aplicaciones de allyl ITC, metham sodium, o MeBr. Allyl ITC a 750 kg ha−1 o metham sodium a 360 kg ha−1 controlaron A. palmeri ≥79%, D. sanguinalis 76%, y C. esculentus ≥80%, y este control fue comparable al control observado con MeBr. Las dosis más altas de allyl ITC y metham sodium redujeron la densidad de los tubérculos de C. esculentus (≤76 tubérculos m−2), lo que fue comparable a la aplicación de MeBr. El rendimiento comercializable total del tomate fue ≥31.6 ton ha−1 en las parcelas tratadas con allyl ITC a 750 kg ha−1 o con metham sodium a 360 kg ha−1. El rendimiento comercializable del tomate con la dosis más alta de allyl ITC o metham sodium fue similar al rendimiento del tratamiento con MeBr (38.2 ton ha−1). De esta manera, allyl ITC a 750 kg ha−1 y metham sodium a 360 kg ha−1 son alternativas efectivas al MeBr para el control de A. palmeri, D. sanguinalis, y C. esculentus en tomate con cobertura LDPE.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ajwa, HA, Trout, T, Mueller, J, Wilhelm, S, Nelson, SD, Soppe, R, and Shatley, D (2002) Application of alternative fumigants through drip irrigation systems. Phytopathology 92:13491355 CrossRefGoogle ScholarPubMed
Al-Khatib, K, Libbey, C, Boydston, RA (1997) Weed suppression with Brassica green manure crops in green pea. Weed Sci 45:439445 CrossRefGoogle Scholar
Anderson, WP (1999) Perennial Weeds: Characteristics and Identification of Selected Herbaceous Species. 1st edn. Ames, IA: Iowa State University Press. Pp 228.Google Scholar
Anonymous (2013) Vapam HL Soil Fumigant. http://www.cdms.net. Accessed September 9, 2013Google Scholar
Austerweil, M, Steiner, B, Gamliel, A (2006) Permeation of soil fumigants through agricultural plastic films. Phytoparasitica 34:491501 Google Scholar
Bangarwa, SK (2010) Integrated strategies for purple (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) management in tomato and bell pepper. Ph.D Dissertation. Fayetteville, AR: University of Arkansas. 208 pGoogle Scholar
Bangarwa, SK, Norsworthy, JK, Gbur, EE (2012) Allyl isothiocyanate as a methyl bromide alternative for weed management in polyethylene-mulched tomato. Weed Technol 26:449454 Google Scholar
Bangarwa, SK, Norsworthy, JK, Gbur, EE, Mattice, JD (2010) Phenyl isothiocyanate performance on purple nutsedge under virtually impermeable film mulch. HortTechnology 20:402408 Google Scholar
Borek, V, Elberson, LR, McCaffrey, JP, Morra, MJ (1998) Toxicity of isothiocyanates produced by glucosinolates in Brassicaceae species to black vine weevil eggs. J Agric Food Chem 46:53185323 CrossRefGoogle Scholar
Bridges, DC, Baumann, PA (1992) Weeds causing losses in the United States. Pages 75147 in Bridges, DC, ed. Crop Losses Due to Weeds in Canada and the United States. Champaign, IL: Weed Science Society of America Google Scholar
Brown, PD, Morra, MJ (1995) Glucosinolate-containing plant tissues as bioherbicides. Agric Food Chem 43:30703074.Google Scholar
Carpenter, J, Gianessi, L, Lynch, L (2000) The economic impact of the scheduled U.S. phaseout of methyl bromide. National Center for Food and Agricultural Policy. Pp 70137 Google Scholar
Devkota, P, Norwsorthy, JK, Rainey, R (2013) Comparison of allyl isothiocyanate and metham sodium with methyl bromide for weed control in polyethylene-mulched bell pepper. Weed Technol 27:468474 Google Scholar
Fu, R, Ashley, RA (2006) Interference of large crabgrass (Digitaria sanguinalis), redroot pigweed (Amaranthus retroflexus), and hairy galinsoga (Galinsoga ciliata) with bell pepper. Weed Sci 54:364372 CrossRefGoogle Scholar
Gilreath, JP, Santos, BM (2004) Efficacy of methyl bromide alternatives on purple nutsedge (Cyperus rotundus) control in tomato and pepper. Weed Technol 18:341345 Google Scholar
Gilreath, JP, Santos, BM, and Motis, TN (2008) Performance of methyl bromide alternatives in strawberry. HortTechnology 18:8083 Google Scholar
Gilreath, JP, Santos, BM, Motis, TN, Noling, JW, Mirusso, JM (2005) Methyl bromide alternatives for nematode and Cyperus control in bell pepper (Capsicum annuum). Crop Prot 24:903908.Google Scholar
Holmes, GJ, Kemble, JM (2010) Vegetable Crop Handbook for the Southeastern United States. 11th edn. Lincolnshire, IL: Vance. Pp. 9394, 269.Google Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 Google Scholar
Johnson, WC III, Mullinix, BG Jr. (2007) Yellow nutsedge (Cyperus esculentus) control with metham-sodium in transplanted cantaloupe (Cucumis melo). Crop Prot 26:867871 Google Scholar
Locascio, SJ, Gilreath, JP, Dickson, DW, Kucharek, TA, Jones, JP, Noling, JW (1997) Fumigant alternatives to methyl bromide for polyethylene-mulched. HortScience 32:12081211 Google Scholar
Meyers, SL, Jennings, KM, Schultheis, JR, Monks, DW (2010) Interference of Palmer amaranth (Amaranthus palmeri) in sweet potato. Weed Sci 58:199203 Google Scholar
Monaco, TJ, Grayson, AS, Sanders, DC (1981) Influence of four weed species on the growth, yield, and quality of direct-seeded tomatoes (Lycopersicon esculentum). Weed Sci 29:394397 Google Scholar
Morales-Payan, JP, Stall, WM, Shilling, DG, Charudattan, R, Dusky, JA, Bewick, TA (2003a) Above- and below-ground interference of purple and yellow nutsedge (Cyperus spp.) with tomato. Weed Sci 51:181185 CrossRefGoogle Scholar
Morales-Payan, JP, Stall, WM, Shilling, DG, Dusky, JA, Bewick, TA, Charudattan, R (2003b) Initial weed-free period and subsequent yellow nutsedge population's density affect tomato yield. Proc Fla State Hort Soc 116:7375 Google Scholar
Norsworthy, JK, Meehan, JT IV (2005a) Herbicidal activity of eight isothiocyanates on Texas panicum (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Sci 53:515520 Google Scholar
Norsworthy, JK, Meehan, JT IV (2005b) Use of isothiocyanates for suppression of Palmer amaranth (Amaranthus palmeri), pitted morningglory (Ipomoea lacunosa), and yellow nutsedge (Cyperus esculentus). Weed Sci 53:884890 Google Scholar
Norsworthy, JK, Oliveira, MJ, Jha, P, Malik, M, Buckelew, JK, Jennings, KM, Monks, DW (2008) Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol 22:296302 Google Scholar
Peterson, J, Belz, R, Walker, F, Hurle, K (2001) Weed suppression by release of isothiocyanates from turnip–rape mulch. Agron J 93:3743 Google Scholar
Sanders, DC, Cook, WP, Cranberry, D (1996) Plasticulture of Commercial Vegetables. North Carolina Cooperative Extension Services, North Carolina State University. Pub. AG489.Google Scholar
Smolinska, U, Knudsen, GR, Morra, MJ, Borek, V (1997) Inhibition of Aphanomyces euteiches f. sp. pisi by volatile allelochemicals form Brassica napus seed meal. Plant Dis 81:288292 Google Scholar
Stall, WM, Morales-Payan, JP (2003) The Critical Period of Nutsedge Interference in Tomato. http://www.imok.ufl.edu/liv/groups/IPM/weed_con/nutsedge.htm. Accessed September 10, 2010Google Scholar
[USDA] U.S. Department of Agriculture (1997) United States Standards for Grades of Fresh Tomato. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050331. Accessed August 16, 2010Google Scholar
[USDA] U.S. Deparment of Agriculture (2013a) Crop Values. 2012 Summary. http://usda01.library.cornell.edu/usda/current/CropValuSu/CropValuSu-02-15-2013.pdf. Acessed September 20, 2013Google Scholar
[USDA] U.S. Department of Agriculture (2013b) Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx. Accessed September 24, 2013Google Scholar
[USEPA] U.S. Environmental Protection Agency (2005) The Phaseout of Methyl Bromide. http://www.epa.gov/ozone/mbr/ Acessed September 24, 2013Google Scholar
Westoby, M, Leishman, M, Lord, J (1996) Comparative ecology of seed size and dispersal. Philos Trans R Soc Lond B Biol Sci 351:13091318 Google Scholar