Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T22:06:12.989Z Has data issue: false hasContentIssue false

Adoption of Best Management Practices for Herbicide-Resistant Weeds in Midsouthern United States Cotton, Rice, and Soybean

Published online by Cambridge University Press:  20 January 2017

Dilpreet S. Riar*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Lawrence E. Steckel
Affiliation:
Department of Plant Sciences, University of Tennessee, 605 Airways Boulevard, Jackson, TN 38301
Daniel O. Stephenson IV
Affiliation:
Dean Lee Research Station, LSU AgCenter, 8105 Tom Bowman Drive, Alexandria, LA 71302
Thomas W. Eubank
Affiliation:
Delta Research and Extension Center, 82 Stoneville Road, Stoneville, MS 38776
Jason Bond
Affiliation:
Delta Research and Extension Center, 82 Stoneville Road, Stoneville, MS 38776
Robert C. Scott
Affiliation:
Department of Crop, Soil, and Environmental Sciences, Lonoke, Box 357, AR 72086
*
Corresponding author's E-mail: [email protected]

Abstract

In fall 2011, cotton and soybean consultants from Arkansas, Louisiana, Mississippi, and Tennessee were surveyed through direct mail and on-farm visits, and rice consultants from Arkansas and Mississippi were surveyed through direct mail to assess the importance and level of implementation of herbicide resistance best management practices (HR-BMPs) for herbicide-resistant weeds. Proper herbicide timing, clean start with no weeds at planting, application of multiple effective herbicide modes of action, use of full labeled herbicide rates, and prevention of crop weed seed production with importance rating of ≥ 4.6 out of 5.0 were perceived as the most important HR-BMPs in all crops. Purchase of certified rice seed was on 90% of scouted hectares. In contrast, least important HR-BMPs as perceived by consultants with importance ratings of ≤ 4.0 in cotton, ≤ 3.7 in rice, and ≤ 3.8 in soybean were cultural practices such as manual removal of weeds; tillage including disking, cultivation, or deep tillage; narrow (≤ 50 cm)-row crops, cover crops, and altered planting dates. Narrow crop rows and cover crops in cotton; altered planting dates in cotton and soybean; and cleaning of farm equipment and manual weeding in rice and soybean is currently employed on ≤ 20% of scouted hectares. Extra costs, time constraints, adverse weather conditions, lack of labor and equipment, profitability, herbicide-related concerns, and complacency were perceived as key obstacles for adoption of most HR-BMPs. With limited adoption of most cultural practices that reduce risks of herbicide-resistant weeds, there are opportunities to educate growers concerning the proactive need and long-term benefits of adopting HR-BMPs to ensure sustainable weed management and profitable crop production.

En el otoño de 2011, se encuestó a asesores para la producción de algodón y soya de Arkansas, Louisiana, Mississippi, y Tennessee mediante correo directo o visitas en finca, y a asesores de producción de arroz de Arkansas y Mississippi mediante correo directo, para evaluar la importancia y el nivel de implementación de las mejores prácticas de manejo de resistencia a herbicidas (HR-BMPs) para el manejo de malezas resistentes a herbicidas. El momento apropiado de aplicación del herbicida, la siembra en condiciones libres de malezas, la aplicación de múltiples herbicidas efectivos con diferentes modos de acción, el uso de la dosis alta del herbicida, y la prevención de producción de semilla de malezas dentro del cultivo fueron percibidas como las HR-BMPs más importantes en todos los cultivos con niveles de importancia ≥4.6 de 5.0. La compra de semilla certificada de arroz estuvo presente en 90% de las hectáreas evaluadas. En cambio, las HR-BMPs menos importantes según la percepción de los asesores con niveles de importancia ≤4.0 en algodón, ≤3.7 en arroz, y ≤3.8 en soya fueron prácticas culturales tales como la deshierba manual, la labranza con discos, el cultivo, o la labranza profunda, el uso de distancias de siembra reducidas entre hileras (≤50 cm), uso de coberturas vivas, y modificación de fechas de siembra. El uso de distancias reducidas entre hileras y de coberturas vivas en algodón, la modificación de fechas de siembra en algodón y soya, y la limpieza de equipo agrícola y la deshierba manual en arroz y soya son utilizados actualmente en ≤20% de las hectáreas evaluadas. Costos extra, limitaciones en disponibilidad de tiempo, condiciones climáticas adversas, falta de mano de obra y equipo, rentabilidad, preocupaciones relacionadas a los herbicidas, y la complacencia fueron percibidos como los principales obstáculos para la adopción de la mayoría de las HR-BMPs. La limitada adopción de la mayoría de las prácticas culturales para reducir los riesgos de las malezas resistentes a herbicidas, indican que existen oportunidades para educar a los productores sobre la necesidad y los beneficios en el largo plazo de adoptar HR-BMPs para asegurar el manejo sostenible de malezas y la rentabilidad de la producción.

Type
Education/Extension
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baldwin, F. 2009. Rice weed control technology. Delta Farm Press. February 2, 2009. http://deltafarmpress.com/rice/rice-weed-control-technology. Accessed April 9, 2013.Google Scholar
Bagavathiannan, M. V. and Norsworthy, J. K. 2012. Late-season seed production in arable weed communities: Management implications. Weed Sci. 60:325334.CrossRefGoogle Scholar
Bagavathiannan, M. V. and Norsworthy, J. K. 2013. Occurrence of arable weeds in roadside habitats: implications for herbicide resistance management. in Proceedings of the Weed Science Society of America Annual Meeting, Baltimore, MD: 163 [Abstract].Google Scholar
Baltazar, A. M. and Smith, R. J. Jr. 1994. Propanil-resistant barnyardgrass (Echinochloa crus-galli) control in rice (Oryza sativa). Weed Sci. 8:576581.Google Scholar
Barrett, S.C.H. 1983. Crop mimicry in weeds. Econ. Bot. 37:255282.Google Scholar
Blackshaw, R. E., O'Donovan, J. T., Harker, K. N., Clayton, G. W. and Stougaard, R. N. 2006. Reduced herbicide doses in field crops: a review. Weed Biol Manag. 6:1017.CrossRefGoogle Scholar
Board, J. E., Harville, B. G., Saxton, A. M. 1990. Narrow-row seed-yield enhancement in determinate soybean. Agron. J. 82:6468.Google Scholar
Boquet, D. J. 2005. Cotton in ultra-narrow row spacing: Plant density and nitrogen fertilizer rates. Agron. J. 97:279287.Google Scholar
Buehring, N., and Dobbs, R. 2000. Cotton plant population effect on growth and yield. P. 660661. in Dugger, P. and Richter, D. (ed.) Proc. Beltwide Cotton Conf., San Antonio, TX. January 4–8, 2000. National Cotton Council, Memphis, TN.Google Scholar
Busi, R., Neve, P., and Powles, S. 2013. Evolved polygenic herbicide resistance in Lolium rigidumby low-dose herbicide selection within standing genetic variation. Evol. Appl. 6:231242.Google Scholar
Cavers, Paul B. 1983. Seed demography. Can. J. Bot. 61:35783590.Google Scholar
Cerdeira, A. L. and Duke, S. O. 2006. The current status and environmental impacts of glyphosate-resistant crops: a review. J. Environ. Qual. 35:16331658.CrossRefGoogle ScholarPubMed
Cousens, R. 1987. Theory and reality of weed control thresholds. Plant Prot. Quart. 2:1320.Google Scholar
Culpepper, S. A. and Sosnoskie, L. M. 2011. Palmer amaranth Management for 2011 Begins Now. Georgia Cotton Newsletter, The University of Georgia Cooperative Extension. http://commodities.caes.uga.edu/fieldcrops/cotton/cnl070910.pdf. Accessed November 29, 2012.Google Scholar
Delouche, J. C., Burgos, N. R., Gealy, D.R.G., Zorilla de San, Martin, Labrada, R., and Larinde, M. 2007. Weedy Rice: Origin, Biology, Ecology, and Control. Rome Food and Agriculture Organization, United Nations Paper 188. 148 p.Google Scholar
DeVore, J. D., Norsworthy, J. K., and Brye, K. R. 2012. Influence of deep tillage and a rye cover crop on glyphosate-resistant Palmer amaranth (Amaranthus palmeri) emergence in cotton. Weed Technol. 26:832838.Google Scholar
DeVore, J. D., Norsworthy, J. K., and Brye, K. R. 2013. Influence of deep tillage and a rye cover crop on glyphosate-resistant Palmer amaranth (Amaranthus palmeri) emergence in soybean. Weed Technol. 26:832838. 27:263–270.Google Scholar
Foresman, C. and Glasgow, L. 2008. US grower perceptions and experiences with glyphosate-resistant weeds. Pest Manag. Sci. 64:388391.Google Scholar
Frisvold, G. B., Hurley, T. M., and Mitchell, P. D. 2009. Adoption of best management practices to control weed resistance by corn, cotton, and soybean growers. AgBioForum. 12:370381.Google Scholar
Givens, W. A., Shaw, D. R., Newman, M. E., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M.D.K., and Jordan, D. L. 2011. Benchmark study on glyphosate-resistant cropping systems in the United States. Part 3: Grower awareness, information sources, experiences, and management practices regarding glyphosate-resistant weeds. Pest Manag. Sci. 67:758770.Google Scholar
Green, J. M. 2007. Review of glyphosate and ALS-inhibiting herbicide crop resistance and resistant weed management. Weed Technol. 21:547558.Google Scholar
Griffith, G. M., Norsworthy, J. K., and Griffin, T. 2010. Cotton yield reductions associated with spatial movement of glyphosate-resistant Palmer amaranth. in Proceedings of the Arkansas Crop Protection Association annual meeting. 14:11.Google Scholar
Hartwig, N. L. and Ammon, H. U. 2002. Cover crops and living mulches. Weed Sci. 50:688699.CrossRefGoogle Scholar
Hill, Z. T., Norsworthy, J. K., Johnson, D. B., and Bararpour, M. T. 2012. Palmer Amaranth control with Brake: A new herbicide for cotton and ditchbanks. in Proceedings of the Arkansas Crop Protection Association annual meeting. Pages 9 p.Google Scholar
Hurley, T. M., Mitchell, P. D., and Frisvold, G. B. 2009. Weed management costs, weed best management practices, and the Roundup Ready® weed management program. AgBioForum. 12:281290.Google Scholar
Jha, P. and Norsworthy, J. K. 2009. Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci. 57:644651.CrossRefGoogle Scholar
Johnson, D. B., Norsworthy, J. K., and Griffith, G. M. 2011. Weed populations after four years of Liberty Link and Roundup Ready cotton [behind pay wall]. in Proceedings of the Beltwide Cotton Conference. Atlanta, GA National Cotton Council of America.Google Scholar
Johnson, W. G., Dilbeck, J. S., Defelice, M. S., and Kendig, J. A. 1998. Weed control with reduced rates of chlorimuron plus metribuzin and imazethapyr in no-till narrow-row soybean (Glycine max). Weed Technol. 12:3236.Google Scholar
Kruger, G. R., Johnson, W. G., Weller, S. C., Owen, M.D.K., Shaw, D. R., Wilcut, J. W., Jordan, D. L., Wilson, R. G., Bernards, M. L., and Young, B. G. 2009. U.S. grower views on problematic weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol. 23:162166.Google Scholar
Llewellyn, R. S., Lindner, R. K., Pannell, D. J., and Powles, S. B. 2002. Resistance and the herbicide resource: Perceptions of western Australian grain growers. Crop Protect. 21:10671075.Google Scholar
Lovelace, M. L. 2003. Implications of quinclorac use in Arkansas: impacts of quinclorac drift on tomato physiology and development of quinclorac resistance in barnyardgrass. Ph.D Dissertation. Fayetteville, AR University of Arkansas. 109 p.Google Scholar
Martin, R. J. and Felton, W. L. 1993. Effect of crop rotation, tillage practice, and herbicides on the population dynamics of wild oats in wheat. Aust. J. Exp. Agric. 33:159165.Google Scholar
Mickelson, J. A. and Renner, K. A. 1997. Weed control using reduced rates of postemergence herbicides in narrow and wide row soybean. J. Prod. Agric. 10:431437.Google Scholar
Mueller, T. C., Mitchell, P. D., Young, B. G., and Culpepper, A. S. 2005. Proactive versus reactive management of glyphosate-resistant or -tolerant weeds. Weed Technol. 19:924933.CrossRefGoogle Scholar
Neve, P., Norsworthy, J. K., Smith, K. L., and Zelaya, I. A. 2011. Modeling glyphosate resistance management strategies for Palmer amaranth (Amaranthus palmeri) in cotton. Weed Technol. 25:335343.Google Scholar
Nichols, R. L., Bond, J., and Culpepper, A. S., et al. 2009. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) spreads in the Southern United States. Resist. Pest Manag. Newsl. 18:810.Google Scholar
Norris, R. F. 1999. Ecological implications of using thresholds for weed management. J. Crop Prod. Pages 3158 in Buhler, D. D., ed. Expanding the Context of Weed Management. New York Haworth.Google Scholar
Norsworthy, J. K., Bond, J., and Scott, R. C. 2013. Weed management practices and needs in Arkansas and Mississippi rice. Weed Technol. 27:623630.CrossRefGoogle Scholar
Norsworthy, J. K., Burgos, N. R., Scott, R. C., and Smith, K. L. 2007a. Consultant perspectives on weed management needs in Arkansas rice. Weed Technol. 21:832839.CrossRefGoogle Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22:108113.Google Scholar
Norsworthy, J. K. and Oliveira, M. J. 2004. Comparison of the critical period for weed control in wide- and narrow-row corn. Weed Sci. 52:802807.Google Scholar
Norsworthy, J. K., Scott, R., Smith, K., Still, J., Estorninos, L. E. Jr., and Bangarwa, S. 2009. Confirmation and management of clomazone-resistant barnyardgrass in rice. Proc. South. Weed Sci. Soc. 62:210 [Abstract].Google Scholar
Norsworthy, J. K., Smith, K. L., Scott, R. C., and Gbur, E. E. 2007b. Consultant perspectives on weed management needs in Arkansas cotton. Weed Technol. 21:825831.CrossRefGoogle Scholar
Norsworthy, J. K., Ward, S. M., Shaw, D. R., Llewellyn, R. S., Nichols, R. L., Webster, T. M., Bradley, K. W., Frisvold, G., Powles, S. B., Burgos, N. R., Witt, W. W., and Barrett, M. 2012. Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Sci. (Special Issue) 60:3162.Google Scholar
Popp, M. P., Oliver, L. R., Dillon, C. R., Keisling, T. C., and Manning, P. M. 2000. Evaluation of seedbed preparation, planting method, and herbicide alternatives for dryland soybean production. Agron. J. 92:11491155.Google Scholar
Prince, J. M., Shaw, D. R., Givens, W. A., Owen, M.D.K., Weller, S. C., Young, B. G., Wilson, R. G., and Jordan, D. L. 2012. Benchmark study: IV. Survey of grower practices for managing glyphosate-resistant weed populations. Weed Technol. 26:543548.CrossRefGoogle Scholar
Rajguru, S. N., Burgos, N. R., Shivrain, V. K., and Stewart, J. M. 2005. Mutations in the red rice ALS gene associated with resistance to imazethapyr. Weed Sci. 53:567577.Google Scholar
Reddy, K. N. and Norsworthy, J. K. 2010. Glyphosate-resistant crop production systems: impact on weed species shifts. Pages 165184 in Nandula, V. K., ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Singapore J. Wiley.Google Scholar
Riar, D. S., Norsworthy, J. K., Bararpour, M. T., Bell, H. D., and Schrage, B. W. 2013a. Activation and length of residual herbicides under furrow and sprinkler irrigation. in Summaries of Arkansas Cotton Research 2012. Arkansas Agric. Exp. Sta. Res. Ser. 610:108113.Google Scholar
Riar, D. S., Norsworthy, J. K., Bond, J. A., Bararpour, M. T., Wilson, M. J., and Scott, R. C. 2012a. Resistance of Echinochloa crus-galli populations to acetolactate synthase-inhibiting herbicides. Intl. J. Agron. 2012:893953.Google Scholar
Riar, D. S., Norsworthy, J. K., and Griffith, G. M. 2011. Herbicide programs for enhanced glyphosate-resistant and glufosinate-resistant cotton (Gossypium hirsutum). Weed Technol. 25:526534.CrossRefGoogle Scholar
Riar, D. S., Norsworthy, J. K., Lewis, A. L., and Bararpour, M. T. 2012b. Confirmation, control, and mechanism of ALS-inhibiting herbicide resistance in rice flatsedge. Proc. Weed Sci. Soc. Amer. annual meeting, Waikoloa, HI: 154. [Abstract].Google Scholar
Riar, D. S., Norsworthy, J. K., Srivastava, V., Nandula, V., and Bond, J. A. 2013b. Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). J. Agri. Food Chem. 61:278289.Google Scholar
Riar, D. S., Norsworthy, J. K., Steckel, L. E., Stephenson, D. O. IV, and Bond, J. A. 2013c. Consultant perspectives on weed management needs in midsouthern United States cotton: A follow-up survey. Weed Technol. 27:778787.Google Scholar
Riar, D. S., Norsworthy, J. K., Steckel, L. E., Stephenson, D. O. IV, Eubank, T. W., and Scott, R. C. 2013d. Assessment of weed management practices and problem weeds in the Midsouth United States-soybean: A consultant's perspective. Weed Technol. 27:612622.Google Scholar
Sammons, R. D., Heering, D. C., Dinicola, N., Glick, H., and Elmore, G. A. 2007. Sustainability and stewardship of glyphosate and glyphosate-resistant crops. Weed Technol. 21:347354.Google Scholar
Shaw, D. R., Givens, W. A., Farno, L. A., Gerard, P. D., Jordan, D., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., and Owen, M.D.K. 2009. Using a grower survey to assess the benefits and challenges of glyphosate-resistant cropping systems for weed management in U.S. corn, cotton, and soybean. Weed Technol. 23:134149.Google Scholar
Steckel, L. E. and Sprague, C. L. 2004. Late-season common waterhemp (Amaranthus rudis) interference in narrow- and wide-row soybean. Weed Technol. 18:947952.Google Scholar
Steckel, L. E., Defelice, M. S., and Sims, B. D. 1990. Integrating reduced rates of postemergence herbicides and cultivation for broadleaf weed control in soybeans (Glycine max). Weed Sci. 38:541545.CrossRefGoogle Scholar
Tharp, B.E., Shabenberger, O., and Kells, J. J. 1999. Response of annual weed species to glufosinate and glyphosate. Weed Technol. 13:542547.Google Scholar
[USDA-NASS] United States Department of Agriculture, National Agricultural Statistics Service. 2012. Acreage: http://www.usda.gov/nass/PUBS/TODAYRPT/acrg0612.pdf. Accessed April 17, 2013.Google Scholar
Vila-Aiub, M. M., Martinez-Ghersa, M. A., and Ghersa, C. M. 2003. Evolution of herbicide resistance in weeds: vertically transmitted fungal endophytes as genetic entities. Evol. Ecol. 17:441456.Google Scholar
Vories, E. D., Valco, T. D., Bryant, K. J., and Glover, R. E. 2001. Three year comparison of conventional and ultra narrow row cotton production systems. Appl. Eng. Agric. 17:583589.Google Scholar
Webster, T. M. and MacDonald, G. E. 2001. A survey of weeds in various crops in Georgia. Weed Technol. 15:771790.Google Scholar
Wauchope, R. D., Sumner, H. R., and Dowler, C. C. 1997. A measurement of the total mass of spray and irrigation mixtures intercepted by small whole plants. Weed Tech. 11:466472.Google Scholar
Zhang, J., Weaver, S. E., and Hamill, A. S. 2000. Risks and reliability of using herbicides at below-labeled rates. Weed Technol. 14:106115.Google Scholar