Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T16:51:11.379Z Has data issue: false hasContentIssue false

Acrolein Reduces Biomass and Seed Production of Potamogeton pectinatus in Irrigation Channels

Published online by Cambridge University Press:  20 January 2017

Diego J. Bentivegna*
Affiliation:
Comisión de Investigaciones Científicas de la Pcia, Buenos Aires (CIC) and Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Casilla de Correo 738, Universidad Nacional del Sur (UNS), 8000 Bahía Blanca, Argentina
Osvaldo A. Fernández
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and CERZOS, Casilla de Correo 738, Universidad Nacional del Sur (UNS), 8000 Bahía Blanca, Argentina
María A. Burgos
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and CERZOS, Casilla de Correo 738, Universidad Nacional del Sur (UNS), 8000 Bahía Blanca, Argentina
*
Corresponding author's E-mail: [email protected]

Abstract

Chemical weed control with acrolein has been shown to be a lower cost method for reducing submerged plant biomass of sago pondweed in the irrigation district of the Lower Valley of Rio Colorado, Argentina (39°10′S–62°05′W). However, no experimental data exist on the effects of the herbicide on plant growth and its survival structures. Field experiments were conducted during 3 yr to evaluate the effect of acrolein on growth and biomass of sago pondweed and on the source of underground propagules (i.e., rhizomes, tubers, and seeds). Plant biomass samples were collected in irrigation channels before and after several herbicide treatments. The underground propagule bank was evaluated at the end of the third year. Within each treatment, plant biomass was significantly reduced by 40 to 60% in all three study years. Rapid new plant growth occurred after each application; however, it was less vigorous after repeated treatments. At the end of the third year at 3,000 m downstream from the application point, plant biomass at both channels ranged from 34 to 3% of control values. Individual plant weight and height were affected by acrolein treatments, flowering was poor, and seeds did not reach maturity. After 3 yr, acrolein did not reduce the number of tubers. However, they were significantly smaller and lighter. Rhizomes fresh weight decreased by 92%, and seed numbers decreased by 79%. After 3 yr of applications, operational functioning of the channels could be maintained with fewer treatments and lower concentrations of acrolein.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Acosta, L. W. 1998. Banco de Propágulos de Macrófitas Sumergidas en el Distrito de Riego del Valle Inferior del Río Colorado y su Relación con el Manejo y Factores Ambientales. M.S. thesis. Universidad Nacional del Sur, Bahia Blanca, Argentina. 88 p.Google Scholar
Acosta, L. W., Sabbatini, M. R., Fernández, O. A., and Burgos, M. A. 1999. Propagule bank and plant emergence of macrophytes in artificial channels of a temperature irrigation area in Argentina. Hydrobiología 415:15.Google Scholar
Acosta, L. W., Sabbatini, M. R., Hernández, L. F., and Fernández, O. A. 1998. Regeneración de cuerpos reproductivos de Potamogeton pectinatus L., Ruppia maritima, Zannichellia palustris y Chara contraria: efecto de la temperatura. Phyton 63:167178.Google Scholar
Baker Petrolite. 2002. MAGNACIDE® H Manual de aplicaciones y seguridad. Bakersfield, CA: Baker Petrolite. Pp. 134.Google Scholar
Bentivegna, D. J. 2001. Crecimiento y desarrollo de Potamogeton pectinatus L. y su respuesta a tratamientos químicos con Acroleína. M.S. thesis. Universidad Nacional del Sur, Bahia Blanca, Argentina. 184 p.Google Scholar
Bowmer, K. H. 1979. Management of aquatic weeds in Australian irrigation systems. in Medd, R. W. and Auld, B. A., eds. Proceedings of the 7th Asian-Pacific Weed Science Society Conference. Pp. 219222.Google Scholar
Bowmer, K. H. and Higgins, M. L. 1976. Some aspects of the persistence and fate of acrolein herbicide in water. Arch. Environ. Contam. Toxicol 5:8796.Google Scholar
Bowmer, K. H. and Sainty, G. R. 1977. Management of aquatic plant with acrolein. J. Aquat. Plant Manag 15:4046.Google Scholar
Bowmer, K. H., Sainty, G. R., Smith, G., and Shaw, K. 1979. Management of Elodea in Australian irrigation systems. J. Aquat. Plant Manag 17:412.Google Scholar
Bowmer, K. H. and Smith, G. H. 1984. Herbicides for injection into flowing water: acrolein and endothal-amine. Weed Res 24:201211.Google Scholar
Bowmer, K. M., Mitchell, D. S., and Short, D. L. 1984. Biology of Elodea Canadensis Mich. and its management in Australian irrigation systems. Aquat. Bot 18:231238.Google Scholar
Caffrey, J. M. 1990. Problems relating to the management of Potamogeton pectinatus L. in Irish rivers. in Barett, P. R. F., Greaves, M. P., Murphy, K. J., Pieterse, A. H., Wade, P. M., and Wallste, N. M., eds. Proceedings of the European Weed Research Society 8th Symposium on Aquatic Weeds. Pp. 6168.Google Scholar
[CEC] Commission of European Communities. 1996. Biological Management of Irrigation Channel Weed Problems in Irrigated Semi-arid Agriculture. Delft, The Netherlands: Commission of European Communities. Final Report Grant EC STD3, Programme Contract No. TS3*-CT92-0125. Pp. 91.Google Scholar
Corbus, F. G. 1982. Aquatic weed control with endothall in a salt river project channel. J. Aquat. Plant Manag 20:13.Google Scholar
Drovandi, A. A. 1993. Aquatic Weed Problems in Two Irrigation Schemes; Effects of Light Climate Change on the Growth and Development of Potamogeton pectinatus L. in the South of Argentina. M.S. thesis. IHE, Delft, The Netherlands. 71 p.Google Scholar
Fernández, O. A., Irigoyen, J. H., Sabbatini, M. R., and Svachka, O. 1987. Recomendaciones para el control de Potamogeton striatus y Chara contraria en canales de riego. Malezas 15:546.Google Scholar
Fernández, O. A., Sutton, D., Lallana, V., Sabbatini, M. R., and Irigoyen, J. H. 1993. Aquatic weed problems and management in South and Central America. in Pieterse, A. H. and Murphy, K. J., eds. Aquatic Weeds: The Ecology and Management of Nuisance Aquatic Vegetation. 2nd ed. Oxford University Press, UK. Pp. 406425.Google Scholar
Hansen, G. W., Oliver, F. E., and Otto, N. E. 1983. Herbicide Manual. Denver, CO: U.S. Department of the Interior, Bureau of Reclamation. Pp. 97168.Google Scholar
Idestam-Almquist, J. and Kautsky, L. 1995. Plastic responses in morphology of Potamogeton pectinatus L. to sediment and above-sediment conditions at two sites in the northern Baltic proper. Aquatic Botany 52:205216.Google Scholar
Khattab, A. F. and El-Gharably, Z. 1986. Management of aquatic weeds in irrigation systems with special reference to the problem in Egypt. in Pieterse, A. H., ed. Proceedings 7th International Symposium on Aquatic Weeds. Pp. 199206.Google Scholar
Madsen, J. D., Adams, M. S., and Ruffier, P. 1988. Harvest as a control for sago pondweed (Potamogeton pectinatus L.) in Badfish Creek, Wisconsin: frequency, efficiency and its impact on the stream community oxygen metabolism. J. Aquat. Plant Manag 26:2025.Google Scholar
Nordone, A. J., Kovacs, M. F., and Doane, R. 1997. [14]C Acrolein accumulation and metabolism in leaf lettuce. Bull. Environ. Contam. Toxicol 58:787792.CrossRefGoogle Scholar
Nordone, A. J., Matherly, R., Bonnivier, B., Doane, R., Caravello, H., Paakonen, S., Winchester, W., and Parent, R. A. 1996. Effect of magnacide H herbicide residuals on water quality within wildlife refuges of the Klamath Basin, CA. Bull. Environ. Contam. Toxicol 59:964970.Google Scholar
O'Loughlin, E. M. and Bowmer, K. H. 1975. Dilution and decay of aquatic herbicide in flowing channels. J. Hydrol 26:217235.Google Scholar
Sabbatini, M. R., Murphy, K. J., and Irigoyen, J. H. 1997. Vegetation-environment relationships in irrigation channel systems of southern Argentina. Aquat. Bot 60:119133.Google Scholar
Spencer, D. F. 1986. Tuber demography and its consequences for Potamogeton pectinatus L. in Pieterse, A. H., ed. Proceedings of the 7th Symposium on Aquatic Weeds, European Weed Research Society and Association of Applied Biologists. UK. Pp. 321325.Google Scholar
Spencer, D. F. 1987. Tuber size and planting depth influence growth of Potamogeton pectinatus L. Am. Midl. Nat 118:7784.Google Scholar
Van Wijk, R. J. 1986. Life cycle characteristics of Potamogeton pectinatus L. in relation to control. in Peiterse, A. H., ed. Proceedings of the 7th Symposium on Aquatic Weeds, European Weed Research Society and Association of Applied Biologists. UK. Pp. 375380.Google Scholar
Vermaat, J. E. and Hootsmans, M. J. M. 1991. Macrophytes, a key to understanding changes caused by eutrophication in shallow freshwater ecosystems. Delft, The Netherlands: IHE Rep Series 21. 412 p.Google Scholar
[WSSA] Weed Science Society of America. 1979. Herbicide Handbook of the Weed Science Society of America. Acrolein (2 propenal). 4th ed. Champaign, IL: Weed Science Society of America. Pp. 47.Google Scholar
Yeo, R. R. 1965. Life history of sago pondweed. Weeds 13:314321.Google Scholar