Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T23:53:57.076Z Has data issue: false hasContentIssue false

Saflufenacil Carryover Injury Varies among Rotational Crops

Published online by Cambridge University Press:  20 January 2017

Darren E. Robinson*
Affiliation:
Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, ON N0P 2C0, Canada
Kristen E. McNaughton
Affiliation:
Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, ON N0P 2C0, Canada
*
Corresponding author's E-mail: [email protected]

Abstract

Trials were established in 2007, 2008, and 2009 in Ontario, Canada, to determine the effect of soil residues of saflufenacil on growth, yield, and quality of eight rotational crops planted 1 yr after application. In the year of establishment, saflufenacil was applied PRE to field corn at rates of 75, 100, and 200 g ai ha−1. Cabbage, carrot, cucumber, onion, pea, pepper, potato, and sugar beet were planted 1 yr later, maintained weed-free, and plant dry weight, yield, and quality measures of interest to processors for each crop were determined. Reductions in dry weight and yield of all grades of cucumber were determined at both the 100 and 200 g ha−1 rates of saflufenacil. Plant dry weight, bulb number, and size and yield of onion were also reduced by saflufenacil at 100 and 200 g ha−1. Sugar beet plant dry weight and yield, but not sucrose content, were decreased by saflufenacil at 100 and 200 g ha−1. Cabbage plant dry weight, head size, and yield; carrot root weight and yield; and pepper dry weight, fruit number and size, and yield were only reduced in those treatments in which twice the field corn rate had been applied to simulate the effect of spray overlap in the previous year. Pea and potato were not negatively impacted by applications of saflufenacil in the year prior to planting. It is recommended that cabbage, carrot, cucumber, onion, pepper, and sugar beet not be planted the year after saflufenacil application at rates up to 200 g ha−1. Pea and potato can be safely planted the year following application of saflufenacil up to rates of 200 g ha−1.

En 2007, 2008 y 2009 se establecieron ensayos en Ontario, Canadá para determinar el efecto de residuos de saflufenacil en el suelo sobre el crecimiento, rendimiento y calidad de ocho cultivos en rotación sembrados un año después de la aplicación. En el año del establecimiento, el saflufenacil fue aplicado PRE en campos de maíz a dosis de 75, 100 y 200 g ia ha−1. Los cultivos en rotación que se sembraron un año más tarde fueron: col, zanahoria, pepino, cebolla, arveja, pimiento, papa y remolacha azucarera; se mantuvieron libres de malezas y se determinaron para cada cultivo el peso seco, el rendimiento y los parámetros de calidad de interés para los procesadores. Reducciones en el peso seco y el rendimiento en todas las categorías de pepino fueron determinadas tanto para las dosis de 100 como de 200 g ha−1 de saflufenacil. El peso seco de la planta, el número de bulbos y el tamaño y rendimiento de la cebolla, también se redujeron con ambas dosis de saflufenacil. Con el uso de saflufenacil a 100 y 200 g ha−1, el peso seco y el rendimiento de la remolacha disminuyeron, pero no así el contenido de sucrosa. El peso seco, el tamaño de la cabeza y el rendimiento de la col, el peso de la raíz y el rendimiento de la zanahoria, el peso seco, el número y tamaño de frutos y el rendimiento del pimiento, solamente se redujeron en aquellos tratamientos donde se aplicó el doble de la dosis normal para el maíz para simular el efecto del traslape de aspersión en el año anterior. La arveja y la papa no fueron negativamente impactadas por las aplicaciones de saflufenacil en el año anterior a la siembra. Se recomienda que la col, la zanahoria, el pepino, la cebolla, el pimiento y la remolacha no se siembren el año posterior a las aplicaciones de saflufenacil a dosis de hasta 200 g ha−1. La arveja y la papa pueden sembrarse con seguridad el año siguiente a las aplicaciones de saflufenacil a dosis de hasta 200 g ha−1.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2008. Kixor® Worldwide Technical Brochure. Research Triangle Park, NC BASF Corporation. 18 p.Google Scholar
Bartlett, M. S. 1947. The use of transformations. Biometrics 3:3952.CrossRefGoogle ScholarPubMed
BASF Canada Inc. 2010. Eragon™ Herbicide Label. Mississauga, ON, Canada BASF Canada Inc. 17 p.Google Scholar
[CFIA] Canadian Food Inspection Agency. 2006. Vegetable Inspection Manual: Potatoes. http://www.inspection.gc.ca/english/fssa/frefra/vegman/potpom/potpome.shtml. Accessed April 1, 2008.Google Scholar
Cobucci, T., Silva, J. B., and Prates, H. T. 1997. Carryover effect of fomesafen, applied on edible bean, on successional maize. Planta Daninha 15:180187.CrossRefGoogle Scholar
Felix, J. and Doohan, D. J. 2005. Response of five vegetable crops to isoxaflutole soil residues. Weed Technol. 19:391396.CrossRefGoogle Scholar
Felix, J., Doohan, D. J., and Bruins, D. 2007. Differential vegetable crop responses to mesotrione soil residues a year after application. Crop Prot. 26:13951403.CrossRefGoogle Scholar
Ferrell, J. A. and Vencill, W. K. 2003. Flumioxazin soil persistence and mineralization in laboratory experiments. J. Agric. Food Chem. 51:47194721.CrossRefGoogle ScholarPubMed
Grey, T. L., Bridges, D. C., and NeSmith, D. S. 2002. Transplanted pepper (Capsicum annuum) tolerance to selected herbicides and method of application. J. Vegetable Crop Prod. 8:2739.CrossRefGoogle Scholar
Grey, T. L. and Culpepper, A. S. 2005. Residual herbicide carryover simulation in transplanted Vidalia onions. Pages 101102 in Proceedings of the 2005 Southeast Regional Vegetable Conference. Savannah, GA Georgia Fruit and Vegetable Growers' Association.Google Scholar
Grey, T. L., Walker, R. H., Wehtje, G. R., and Hancock, H. G. 1997. Sulfentrazone sorption and mobility as affected by soil and pH. Weed Sci. 45:733738.Google Scholar
Hixon, A. D. 2008. Soil Properties Affect Simazine and Saflufenacil Fate, Behavior, and Performance. Ph.D. dissertation. Raleigh, NC North Carolina State University, http://repository.lib.ncsu.edu/ir/bitstream/1840.16/3956/1/etd.pdf. Accessed: May 11, 2011.Google Scholar
Johnson, D. H. and Talbert, R. E. 1993. Imazaquin, chlorimuron, and fomesafen may injure rotational vegetables and subflower (Helianthus annuus). Weed Technol. 7:573577.CrossRefGoogle Scholar
Liebl, R. A., Walter, H., Bowe, S. J., Holt, T. J., and Westberg, D. E. 2008. BAS 800H: a new herbicide for preplant burndown and preemergence dicot weed control. WSSA Abstract 48:120.Google Scholar
Martinez, C. O., de Souza Silva, C. M. M., Fay, E. F., Abakerli, R. B., de Holanda Nunes Maia, A., and Durrant, L. R. 2008. The effects of moisture and temperature on the degradation of sulfentrazone. Geoderma 147:5662.CrossRefGoogle Scholar
Ogbuchiekwe, E. J., McGiffen, M. E., Nunez, J., and Fennimore, S. A. 2004. Tolerance of carrot to low-rate preemergent and postemergence herbicides. HortScience 39:291296.CrossRefGoogle Scholar
[OMAFRA] Ontario Ministry of Agriculture, Food and Rural Affairs. 2006. Vegetable Production Recommendations 2006–2007. Publication 363. Toronto, ON, Canada.Google Scholar
[OPVG] Ontario Processing Vegetable Growers. 2009. 2009 Information Handbook. OPVG, London, ON, Canada. 143 p.Google Scholar
Particka, M. G. and Zandstra, B. H. 2004. Rimsulfuron carryover effects in cucumber, snap bean and sugarbeet. NCWSS Abstract 59:160.Google Scholar
Pekarek, R. A., Garvey, P. V., Monks, D. W., Jennings, K. M., and MacRae, A. W. 2010. Sulfentrazone carryover to vegetables and cotton. Weed Technol. 24:2024.CrossRefGoogle Scholar
[PMRA] Pest Management Regulatory Agency. 2009. Proposed Registration Decision PRD-2009-18: Saflufenacil. Ottawa, ON, Canada Health Canada. 125 p.Google Scholar
[PMRA] Pest Management Regulatory Agency. 2010. Established Maximum Residue Limit EMRL-2010-17: Saflufenacil. Ottawa, ON, Canada Health Canada. 6 p.Google Scholar
Pesticides Safety Directorate. 2004. Weed Management in Carrots (Daucus carota) and Parsnips (Pastinaca sativa). Interim research report. York, North Yorkshire, UK Chemical Regulation Directorate. 11 p.Google Scholar
Robinson, D. E. 2008. Atrazine accentuates carryover injury from mesotrione in vegetable crops. Weed Technol. 22:641645.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems Institute Inc. 2004. SAS/STAT® 9.1 User's Guide, The MIXED Procedure. Cary, NC SAS Institute Inc. Pp. 26592852.Google Scholar
Sikkema, P. H., Soltani, N. and Robinson, D. E. 2007. Responses of cole crops to pre-transplant herbicides. Crop Prot. 26:11731177.CrossRefGoogle Scholar
Soltani, S., Shropshire, C., and Sikkema, P. H. 2010. Sensitivity of leguminous crops to saflufenacil. Weed Technol. 24:143146.CrossRefGoogle Scholar
Soltani, N., Sikkema, P. H., and Robinson, D. E. 2005. Effect of foramsulfuron and isoxaflutole residues on rotational vegetable crops. HortScience 40:620622.CrossRefGoogle Scholar
Wilson, D. E., Nissen, S. J., and Thompson, A. 2002. Potato (Solanum tuberosum) variety and weed response to sulfentrazone and flumioxazin. Weed Technol. 16:567574.CrossRefGoogle Scholar