Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T07:47:32.275Z Has data issue: false hasContentIssue false

Response of Processing Tomato to Simulated Bromoxynil Drift Followed by In-Crop Metribuzin Application

Published online by Cambridge University Press:  20 January 2017

Kristen E. McNaughton
Affiliation:
Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, Ontario, Canada N0P 2C0
Peter H. Sikkema
Affiliation:
Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, Ontario, Canada N0P 2C0
Darren E. Robinson*
Affiliation:
Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, Ontario, Canada N0P 2C0
*
Corresponding author's E-mail: [email protected]

Abstract

Simulated drift rates of bromoxynil followed by an in-crop application of metribuzin were applied to processing tomato in eight field studies conducted from 2008 to 2010 in Ridgetown, Ontario, Canada, to determine if a synergistic interaction occurred due to the cumulative herbicide application. A transient synergistic response was observed 7 d after treatment (DAT) when bromoxynil drift rates of 8.5, 17, and 34 g ai ha−1 were followed 3 to 5 d later by metribuzin at 250 g ai ha−1. By 28 DAT, visible injury ratings were additive for 8.5, 17, and 34 g ha−1 bromoxynil followed by metribuzin treatments. However, when bromoxynil at 68 g ha−1 (20% of field rate) was followed by metribuzin, a synergistic interaction was evident and remained through harvest. Based on Colby's equation there was greater visible injury than expected at 7, 14, and 28 DAT when bromoxynil at 68 g ha−1 was followed by metribuzin. A corresponding synergistic reduction of plant dry weight and marketable tomato yield, compared with the nontreated control, was identified. Marketable yields were expected to be 65% of the control according to Colby's equation, but observed yield reductions were 49% when bromoxynil at 68 g ha−1 was followed by metribuzin. In general, tomato plants sprayed with metribuzin after bromoxynil drift had greater injury than treatments sprayed with bromoxynil alone.

Se aplicaron dosis de deriva simulada de bromoxynil seguidas de una aplicación de metribuzin dentro del cultivo de tomate para procesamiento en ocho estudios de campo realizados desde 2008 a 2010 en Ridgetown, Ontario, Canadá, para determinar si ocurrió una interacción sinérgica como consecuencia de la aplicación acumulada de herbicidas. A 7 d después del tratamiento (DAT) se observó una respuesta sinérgica transitoria cuando las dosis de bromoxynil 8.5, 17, y 34 g ai ha−1 fueron seguidas 3 a 5 d después por metribuzin a 250 g ai ha−1. A 28 DAT, las evaluaciones de daño visual fueron aditivas para 8.5, 17, y 34 g ha−1 de bromoxynil seguidas de tratamientos de metribuzin. Sin embargo, cuando bromoxynil a 68 g ha−1 (20% de la dosis de campo) fue seguido de metribuzin, la interacción sinérgica fue evidente y esta se mantuvo hasta la cosecha. Con base en la ecuación Colby, hubo un daño visible mayor que el esperado a 7, 14, y 28 DAT cuando bromoxynil a 68 g ha−1 fue seguido de metribuzin. Se identificó una reducción sinérgica correspondiente de peso seco de planta y de rendimiento de tomate comercializable, al compararse con el testigo sin tratamiento. Según la ecuación Colby se esperaba que los rendimientos comercializables fueran 65% en comparación con el testigo, pero las reducciones de rendimiento observadas fueron 49% cuando bromoxynil a 68 g ha−1 fue seguido de metribuzin. En general, las plantas de tomate tratadas con metribuzin después de la deriva de bromoxynil tuvieron un daño mayor que los tratamientos aplicados con solamente bromoxynil.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abendroth, J. A., Martin, A. R., and Roeth, F. W. 2006. Plant response to combinations of mesotrione and photosystem II inhibitors. Weed Technol. 20:267274.Google Scholar
Brown, L. R., Robinson, D. E., Young, B. G., Loux, M. M., Johnson, W. G., Nurse, R. E., Swanton, C. J., and Sikkema, P. H. 2009. Response of corn to simulated glyphosate drift followed by in-crop herbicides. Weed Technol. 23:1116.CrossRefGoogle Scholar
Colby, S. R. 1967. Calculating synergistic and antagonistic response of herbicide combinations. Weeds. 15:2022.CrossRefGoogle Scholar
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Herbicidal inhibition of photosynthetic electron transport. Pages 113140 in Davine, M. D., Duke, S. O., and Fedtke, C. (eds.), Physiology of Herbicide Action. Englewood Cliffs, NJ Prentice-Hall.Google Scholar
Green, J. M. 1989. Herbicide antagonism at the whole plant level. Weed Technol. 3:217226.CrossRefGoogle Scholar
Gressel, J. 1990. Synergizing herbicides. Rev. Weed Sci. 5:4982.Google Scholar
Haderlie, L. C. and Petersen, P. J. 1986. Herbicide drift and fall application at herbicide rates to potatoes. Pages 334340 in Research Progress Report—Western Society of Weed Science. San Diego, CA Western Society of Weed Science.Google Scholar
Hugie, J. A., Bollero, G. A., Tranel, P. J., and Riechers, D. E. 2008. Defining the rate requirements for synergism between mesotrione and atrazine in redroot pigweed (Amaranthus retroflexus). Weed Sci. 56:265270.Google Scholar
Kruger, G. R., Johnson, W. G., Doohan, D. J., and Weller, S. C. 2012. Dose response of glyphosate and dicamba on tomato (Lycopersicon esculentum) injury. Weed Technol. 26:256260.Google Scholar
Leino, P. W. and Haderlie, L. C. 1985. Simulated herbicide drift injury in potatoes. Proc. West. Soc. Weed Sci. 38:9399.Google Scholar
Lich, M., Renner, K. A., and Penner, D. 1997. Interaction of glyphosate with postemergence soybean (Glycine max) herbicides. Weed Sci. 45:1221.Google Scholar
McGee, B., Berges, H., and Beaton, D. 2010. Economics Information—Survey of Pesticide Use in Ontario, 2008 Estimates of Pesticides Used on Field Crops, Fruit and Vegetable Crops, and Other Agricultural Crops. www.omafra.gov.on.ca/english/crops/facts/pesticide-use.htm. Accessed September 1, 2012.Google Scholar
McNaughton, K. E., Sikkema, P. H., and Robinson, D. E. 2012. Response of processing tomato to simulated glyphosate drift followed by in-crop metribuzin application. Weed Technol. 26:757762.Google Scholar
[OMAFRA] Ontario Ministry of Agriculture and Food. 2009. Vegetable Production Recommendations 2009–2010. Publication 363. Toronto, Ontario, Canada Queen's Printer for Ontario. 243 p.Google Scholar
[OPVG] Ontario Processing Vegetables Growers. 2012. Tomatoes. www.opvg.org/crops/statistics.aspxSection=Tomatoes. Accessed September 1, 2012.Google Scholar
Pfleeger, T., Olszyk, D., Plocher, M., and Yilma, S. 2008. Effects of low concentrations of herbicides on full-season, field-grown potatoes. J. Environ. Qual. 37:20702082.CrossRefGoogle ScholarPubMed
Wolf, T. M., Grover, R., Wallace, K., Shewchuck, S. R., and Maybanks, J. 1993. Effect of protective shields on drift and deposition characteristics of field sprayers. Can. J. Plant Sci. 73:12611273.CrossRefGoogle Scholar