Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T23:09:35.164Z Has data issue: false hasContentIssue false

Response of Four Summer Annual Weed Species to Mowing Frequency and Height

Published online by Cambridge University Press:  20 January 2017

RaeLynn A. Butler
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47909
Sylvie M. Brouder
Affiliation:
Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN 47909
William G. Johnson
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47909
Kevin D. Gibson*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47909
*
Corresponding author's E-mail: [email protected]

Abstract

Greenhouse experiments were conducted in 2011 to evaluate the effect of mowing frequency and mowing height on four summer annual weed species (large crabgrass, barnyardgrass, giant ragweed, and common lambsquarters). Plants were clipped at three heights (5, 10, or 20 cm) and at two frequencies (single clipping or repeated clippings at the same height) to simulate mowing. A nonclipped control was also grown for each species. When clipped once, large crabgrass, barnyardgrass, and giant ragweed produced at least 90% of the total dry weight (DW) of the nonclipped plants, and common lambsquarters produced at least 75%. A single cut was generally not sufficient to prevent weed seed production or kill any of the weeds in this study. Repeated clipping reduced large crabgrass, giant ragweed, and common lambsquarters reproductive DW to 46, 27, and 10% respectively, of the nonclipped control. Barnyardgrass plants that were repeatedly clipped produced between 0 and 8% of the seed DW of nonclipped plants, depending on clipping height. Repeated clipping reduced weed total DW to below 40% for all species compared to nonclipped plants. Our results suggest that, unless combined with other weed management practices, repeated mowing may be necessary to limit the growth and seed production of these weed species.

En 2011, se realizaron experimentos de invernadero para evaluar el efecto de la frecuencia y altura de poda (i.e. chapia) en cuatro especies de malezas anuales de verano (Digitaria sanguinalis, Echinochloa crus-galli, Ambrosia trifida, y Chenopodium album). Las plantas fueron podadas a tres alturas (5, 10, ó 20 cm) y a dos frecuencias (poda única o poda repetida a la misma altura) para simular la chapia. También se incluyó un testigo sin poda para cada especie. Cuando se podó una vez, D. sanguinalis, E. crus-galli, y A. trifida produjeron al menos 90% del total del peso seco (DW) de las plantas sin poda, y C. album produjo al menos 75%. Generalmente, una sola poda no fue suficiente para prevenir la producción de semilla de malezas o matar a ninguna de las malezas en este estudio. La poda repetida redujo el DW reproductivo de D. sanguinalis, A. trifida, y C. album en 46, 27, y 10%, respectivamente, en comparación con el testigo sin poda. Las plantas de E. crus-galli que fueron podadas repetidamente produjeron entre 0 y 8% del DW de semillas en comparación con las plantas sin poda, dependiendo de la altura de poda. La poda repetida redujo el DW total por debajo del 40% en todas las especies al compararse con las plantas sin poda. Nuestros resultados sugieren que, a menos que se combine con otras prácticas de manejo de malezas, la poda o chapia repetida podría ser necesaria para limitar el crecimiento y la producción de semillas de estas especies.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andreasen, C., Hansen, C. H., Moller, C., and Kjaer-Pedersen, N. K. 2002. Regrowth of weed species after cutting. Weed Technol. 16:873879.Google Scholar
Biazzo, J. and Masiunas, J. B. 2000. The use of living mulches for weed management in hot pepper and okra. J. Sustainable Agric. 16:5979.Google Scholar
Bicksler, A. J. and Masiunas, J. B. 2009. Canada thistle (Cirsium arvense) suppression with buckwheat or sudangrass cover crops and mowing. Weed Technol. 23:556563.CrossRefGoogle Scholar
Bond, W. and Grundy, A. C. 2001. Non-chemical weed management in organic farming systems. Weed Res. 41:383405.Google Scholar
Brabham, C. B., Gerber, C. K., and Johnson, W. G. 2011. Fate of glyphosate-resistant giant ragweed (Ambrosia trifida) in the presence and absence of glyphosate. Weed Sci. 59:506511.CrossRefGoogle Scholar
Busey, P. 2003. Cultural management of weeds in turfgrass: A review. Crop Sci. 43:18991911.Google Scholar
Donald, W. W. 2000. Between-row mowing plus in-row band-applied herbicide for weed control in Glycine max . Weed Sci. 48:487500.Google Scholar
Donald, W. W. 2006. Mowing for weed management. Pages 329372 in Singh, H. P., Batish, D. R., and Kohli, R. K., eds. Handbook of Sustainable Weed Management. New York Food Products Press.Google Scholar
Donald, W. W. 2007a. Between-row mowing systems control summer annual weeds in no-till grain sorghum. Weed Technol. 21:511517.Google Scholar
Donald, W. W. 2007b. Control of both winter annual and summer annual weeds in no-till corn with between-row mowing systems. Weed Technol. 21:591601.Google Scholar
Donald, W. W., Kitchen, N. R., and Sudduth, K. A. 2001. Between-row mowing plus banded herbicide to control annual weeds and reduce herbicide use in no-till soybean (Glycine max) and corn (Zea mays). Weed Technol. 15:576584.Google Scholar
Egel, D., Foster, R., Maynard, E., Weinzierl, R., Babadoost, M., O'Malley, P., Nair, A., Cloyd, R., Rivard, C., Kennelly, M., Hutchison, B., and Gu, S. 2012. Midwest vegetable production guide for commercial growers 2012. Purdue Extension ID-56. Pages 86 p.Google Scholar
Gibson, K. D., McMillan, J., Hallett, S. G., Jordan, T., and Weller, S. C. 2011. Effect of a living mulch on weed seed banks in tomato. Weed Technol. 25:245251.CrossRefGoogle Scholar
Graglia, E., Melander, B., and Jensen, R. K. 2006. Mechanical and cultural strategies to control Cirsium arvense in organic arable cropping systems. Weed Res. 46:304312.Google Scholar
Li, B., Shibuya, T., Yogo, Y., and Hara, T. 2004. Effects of ramet clipping and nutrient availability on growth and biomass allocation of yellow nutsedge. Ecol. Res. 19:603612.Google Scholar
Mager, H. J., Young, B. G., and Preece, J. E. 2006. Characterization of compensatory weed growth. Weed Sci. 54:274281.Google Scholar
McCarthy, M. K., and Hatting, J. L. 1974. Effects of herbicide or mowing on musk thistle seed production. Weed Res. 15:363367.CrossRefGoogle Scholar
Monaco, T. J., Weller, S. C., and Ashton, F. M. 2002. Weed Science Principles and Practices, 4th ed. New York John Wiley & Sons, Inc. P. 52.Google Scholar
Patracchini, C., Vidotto, F., and Ferrero, A. 2011. Common ragweed (Ambrosia artemisiifolia) growth as affected by plant density and clipping. Weed Technol. 25:268276.Google Scholar
Renz, M. J. and DiTomaso, J. M. 2006. Early season mowing improves the effectiveness of chlorsulfuron and glyphosate for control of perennial pepperweed (Lepidium latifolium). Weed Technol. 20:3236.Google Scholar
Tipping, P. W. 2008. Mowing-induced changes in soil seed banks and populations of plumeless thistle (Carduus acanthoides) and musk thistle (Carduus nutans). Weed Technol. 22:4955.Google Scholar
Wehtje, G., Wells, L. W., Choate, J. H., Martin, N. R., and Curtis, J. M. 1999. Mowing as a weed control supplement to herbicides and cultivation in peanut (Arachis hypogaea L.). Weed Technol. 13:139143.Google Scholar