Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T09:32:55.543Z Has data issue: false hasContentIssue false

Rate and Application Timing Effects on Tolerance of Covington Sweetpotato to S-Metolachlor

Published online by Cambridge University Press:  20 January 2017

Stephen L. Meyers*
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Katherine M. Jennings
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
David W. Monks
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Donnie K. Miller
Affiliation:
Louisiana State University AgCenter, St. Joseph, LA 71366
Mark W. Shankle
Affiliation:
Pontotoc Ridge-Flatwoods Branch Experiment Station, Mississippi State University, Pontotoc, MS 38863
*
Corresponding author's E-mail: [email protected]

Abstract

Field studies were conducted in 2011 and 2012 at the Horticultural Crops Research Station near Clinton, NC, to determine ‘Covington' sweetpotato tolerance to S-metolachlor rate and application timing. Treatments were a factorial arrangement of four S-metolachlor rates (0, 1.1, 2.2, or 3.4 kg ai ha−1) and six application timings (0, 2, 5, 7, 9, or 14 d after transplanting [DAP]). Immediately following application, 1.9 cm of irrigation was applied to individual plots. Sweetpotato injury was minimal for all treatments (≤ 10%). No. 1 grade sweetpotato yield displayed a negative linear response to S-metolachlor rate, and decreased from 25,110 to 20,100 kg ha−1 as S-metolachlor rate increased from 0 to 3.4 kg ha−1. Conversely, no. 1 sweetpotato yield displayed a positive linear response to S-metolachlor application timing and increased from 19,670 to 27,090 kg ha−1 as timing progressed from 0 to 14 DAP. Total marketable sweetpotato yield displayed a quadratic response to both S-metolachlor application rate and timing. Total marketable yield decreased from 44,950 to 30,690 kg ha−1 as S-metolachlor rate increased from 0 to 3.4 kg ha−1. Total marketable yield increased from 37,800 to 45,780 kg ha−1 as application timing was delayed from 0 to 14 DAP. At 1.1 kg ha−1S-metolachlor, sweetpotato storage root length to width ratio displayed a quadratic relationship to application timing and increased from 1.87 to 2.23 for applications made 0 to 14 DAP. At 2.2 kg ha−1 of S-metolachlor, sweetpotato length to width ratio displayed a quadratic response to application timing, increased from 1.57 to 2.09 for 0 to 10 DAP, and decreased slightly from 2.09 to 2.03 for 10 to 14 DAP. Application timing did not influence length to width ratio of sweetpotato storage roots for those plots treated with S-metolachlor at either 0 or 3.4 kg ha−1.

En 2011 y 2012, se realizaron estudios de campo en la Estación de Investigación de Cultivos Hortícolas, cerca de Clinton, NC, para determinar la tolerancia de la batata ‘Covington' según la dosis de S-metolachlor y el momento de aplicación. Los tratamientos fueron arreglados en forma factorial con cuatro dosis de S-metolachlor (0, 1.1, 2.2, ó 3.4 kg ai ha−1) y seis momentos de aplicación (0, 2, 5 7, 9, ó 14 días después del trasplante [DAP]). Inmediatamente después de la aplicación, se aplicaron 1.9 cm de riego a cada parcela. El daño a la batata fue mínimo en todos los tratamientos (≤10%). El rendimiento de batata grado no. 1 mostró una respuesta linear negativa a las dosis de S-metolachlor, y disminuyó de 25,110 a 20,100 kg ha−1 al incrementarse la dosis de S-metolachlor de 0 a 3.4 kg ha−1. En contraste, el rendimiento de la batata no. 1 mostró una respuesta linear positiva al momento de aplicación de S-metolachlor e incrementó de 19,670 a 27,090 kg ha−1 cuando se pasó de 0 a 14 DAP. El rendimiento comercializable disminuyó de 44,950 a 30,690 kg ha−1 al aumentarse la dosis de S-metolachlor de 0 a 3.4 kg ha−1. El rendimiento comercializable aumentó de 37,800 a 45,780 kg ha−1 cuando se retrasó el momento de aplicación de 0 a 14 DAP. A 1.1 kg ha−1S-metolachlor, el ratio longitud/grosor de las raíces de almacenamiento mostraron una relación cuadrática con el momento de aplicación e incrementaron de 1.87 a 2.23 para aplicaciones hechas de 0 a 14 DAP. A 2.2 kg ha−1 de S-metolachlor, el ratio longitud/grosor mostró una respuesta cuadrática en respuesta al momento de aplicación, e incrementó de 1.57 a 2.09 de 0 a 10 DAP, y disminuyó ligeramente de 2.09 a 2.03 de 10 a 14 DAP. El momento de aplicación no influenció el ratio longitud/grosor de las raíces de almacenamiento de la batata para las parcelas tratadas con S-metolachlor ya sea a 0 ó 3.4 kg ha−1.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2006. Dual Magnum® herbicide product label. Greensboro, NC Syngenta Crop Protection. 3 p.Google Scholar
Belehu, T., Hammes, P. S., and Robbertse, P. J. 2004. The origin and structure of adventitious roots in sweet potato (Ipomoea batatas). Aust. J. Bot. 52:551558.Google Scholar
Firon, N., LaBonte, D., Villordon, A., McGregor, C., Kfir, Y., and Pressman, E. 2009.Google Scholar
Botany and physiology: storage root formation and development. Pages 1326 in Loebenstein, G. and Thottappilly, G., eds. The Sweetpotato. New York Springer.Google Scholar
Kemble, J. M., ed. 2013. 2013 Southeastern U.S. Vegetable Handbook. Lincolnshire, IL Vance. Pp. 9697, 157.Google Scholar
Meyers, S. L., Jennings, K. M., and Monks, D. W. 2012. Response of sweetpotato cultivars to S-metolachlor rate and application time. Weed Technol. 26:474479.Google Scholar
Meyers, S. L., Jennings, K. M., and Monks, D. W. 2013. Herbicide-based weed management programs for Palmer amaranth (Amaranthus palmeri) in sweetpotato. Weed Technol. 27:331340.Google Scholar
Meyers, S. L., Jennings, K. M., Schultheis, J. R., and Monks, D. W. 2010a. Interference of Palmer amaranth (Amaranthus palmeri) in sweetpotato. Weed Sci. 58:119203.Google Scholar
Meyers, S.L., Jennings, K.M., Schultheis, J.R., and Monks, D.W. 2010b. Evaluation of flumioxazin and S-metolachlor rate and timing for Palmer amaranth (Amaranthus palmeri) control in sweetpotato. Weed Technol. 24:495503.Google Scholar
Miller, D., Smith, T., Arnold, T., Lee, D., and Mathews, M. 2011. Effect of simulated rainfall amount and application timing on sweetpotato tolerance to Dual Magnum. Proc. South Weed Sci. Soc. 64:301.Google Scholar
Monks, D. W., Mitchem, W. E., Mills, R. J., and Greeson, C. V. 1998. Response of nutsedge and sweetpotato to EPTC and metolachlor. Proc. South. Weed Sci. Soc. 51:91.Google Scholar
[NCDA and CS] North Carolina Department of Agriculture and Consumer Services. 2012 North Carolina Agricultural Statistics. Raleigh, NC North Carolina Department of Agriculture.Google Scholar
Porter, W. C. 1994. Sedge (Cyperus spp.) control in sweet potatoes. Proc. South. Weed Sci. Soc. 47:79.Google Scholar
Porter, W. C. 1995. Response of sweetpotato cultivars to metolachlor. Hort Sci. 30:441.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Champaign, IL Weed Science Society of America. Pp. 275278.Google Scholar
[USDA] U.S. Department of Agriculture. 2005. United States Standards for Grades of Sweet Potatoes. Washington, DC U.S. Department of Agriculture. 4 p.Google Scholar
Webster, T. M. 2010. Weed survey—southern states. Proc. South Weed Sci. Soc. 63:256.Google Scholar
Wilson, L. A. and Lowe, S. B. 1973. The anatomy of the root system in West Indian sweet potato (Ipomoea batatas (L.) Lam.) cultivars. Ann. Bot. 37:633643.Google Scholar
Yencho, G. C., Pecota, K. V., Schultheis, J. R., VanEsbroeck, Z. P., Holmes, G. J., Little, B. E., Thornton, A. C., and Truong, V. D. 2008. ‘Covington' sweetpotato. Hort. Sci. 43:19111914.Google Scholar