Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T00:16:38.801Z Has data issue: false hasContentIssue false

Poison Ivy (Toxicodendron radican) Control with Triclopyr and Metsulfuron, Applied Alone and in Tank Mixture

Published online by Cambridge University Press:  20 January 2017

Glenn Wehtje*
Affiliation:
Auburn University, Auburn, AL 36849
Charles H. Gilliam
Affiliation:
Auburn University, Auburn, AL 36849
J. Scott McElroy
Affiliation:
Auburn University, Auburn, AL 36849
*
Corresponding author's E-mail:[email protected]

Abstract

Dermatitis from poison ivy is an important health problem, and considerable effort is devoted to the control of this virulent weed. Triclopyr, metsulfuron, and two fixed-ratio tank mixtures of triclopyr and metsulfuron were evaluated across a series of rates for poison ivy control. The objective was to test whether tank mixtures are more effective than triclopyr alone. Triclopyr, metsulfuron, and 9 : 1 and 8 : 2 (by weight) mixtures of these two herbicides, respectively, were applied at eight rates to 1-yr old, pot-grown poison ivy plants. Rates ranged in phytotoxicity from none to death. Percentage of control as determined from plant fresh weight reduction relative to a nontreated control was determined at 1 and 4 mo after treatment (MAT). Data were subjected to ANOVA followed by nonlinear regression. Rates required for 95% control at 1 MAT, control of regrowth at 4 MAT, and the costs of these treatments were determined for the herbicides applied alone and the mixtures. Triclopyr alone and metsulfuron alone were consistently the least and the most expensive treatments, respectively. The mixtures were intermediate to these extremes.

La dermatitis causada por Toxicodendron radican es un problema de salud importante, por lo que se dedican esfuerzos considerables para el control de esta virulenta maleza. Se evaluó triclopyr, metsulfuron, y dos mezclas en tanque en proporciones fijas de triclopyr y metsulfuron a lo largo de una serie de dosis para el control de T. radican. El objetivo fue probar si mezclas en tanque son más efectivas que triclopyr solo. Triclopyr, metsulfuron, y mezclas 9:1 y 8:2 (por peso) de estos dos herbicidas, respectivamente, fueron aplicados a ocho dosis, a plantas de T. radican de un año de dad, crecidas en macetas. La fitotoxicidad causada por las dosis varió de ninguna a muerte. El porcentaje de control, determinado a partir de la reducción en el peso fresco en relación al testigo sin tratar, fue determinado a 1 y 4 meses después del tratamiento (MAT). Los datos se analizaron con ANOVA y con regresiones no-lineales. Las dosis requeridas para controlar 95% a 1 MAT, control de rebrote a 4 MAT, y el costo de estos tratamientos fue determinado para los herbicidas aplicados solos y en mezcla. Triclopyr y metsulfuron solos fueron consistentemente los tratamientos menos y más costoso, respectivamente. Las mezclas fueron intermedias en relación a estos extremos.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Epstein, W. L. and Byers, V. S. 1981. Poison oak and poison ivy dermatitis: prevention and treatment in Forest Service work. Missoula, MT U.S. Forest Service, Equipment Development Center. 13 p.Google Scholar
Gressel, L. and Segal, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance: the outlook for the future. Pages 325347 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. New York J. Wiley.Google Scholar
Miller, J. H. and Miller, K. V. 1999. Forest Plants of the Southeast and Their Wildlife Uses. Champaign, IL Southern Weed Science Society. 452 p.Google Scholar
Mitich, L. W. 1995. Poison-ivy/poison-oak/poison-sumac—the virulent weeds. Weed Technol. 9:653656.Google Scholar
Motulsky, H. and Christopoulos, A. 2004. Fitting models to biological data using nonlinear regression. New York Oxford University Press. 351 p.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS: Weed Science Society of America. Pp. 94–95, 359361.Google Scholar
Streibig, J. C. and Jensen, J. E. 2000. Actions of herbicides in mixtures. Pages 153180 in Cobb, A. H. and Kirkwood, R. C., eds. Herbicides and their Mechanisms of Action. Boca Raton, FL CRC.Google Scholar
Wehtje, G., and Gilliam, C. H. 2012. Cost effectiveness of glyphosate, 2,4-D and triclopyr, alone and in select mixtures for poison ivy control. Weed Technol. 26:469473.Google Scholar
Wehtje, G., Gilliam, C. H., and Marble, S. C. 2010a. Interaction of prodiamine and flumioxazin for nursery weed control. Weed Technol. 24:504509.Google Scholar
Wehtje, G., Gilliam, C. H., and Marble, S. C. 2010b. Postemergence weed control with glyphosate plus flumioxazin combinations. Weed Technol. 24:356360.Google Scholar
Yonce, M. H. and Skroch, W. A. 1989. Control of selected perennial weeds with glyphosate. Weed Sci. 37:360364.Google Scholar