Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T17:23:03.544Z Has data issue: false hasContentIssue false

Influence of Spray-Solution Temperature and Holding Duration on Weed Control with Premixed Glyphosate and Dicamba Formulation

Published online by Cambridge University Press:  20 January 2017

Pratap Devkota*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907
Fred Whitford
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907
William G. Johnson
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907
*
Corresponding author's E-mail: [email protected].

Abstract

Water is the primary carrier for herbicide application, and carrier-water–related factors can influence herbicide performance. In a greenhouse study, premixed formulation of glyphosate plus dicamba was mixed in deionized (DI) water at 5, 18, 31, 44, or 57 C and applied immediately. In a companion study, glyphosate and dicamba formulation was mixed in DI water at temperatures of 5, 22, 39, or 56 C and sprayed after the herbicide solution was left at the respective temperatures for 0, 6, or 24 h. In both studies, glyphosate plus dicamba was applied at 0.275 plus 0.137 kg ae ha−1 (low rate), and 0.55 plus 0.275 kg ha−1 (high rate), respectively, to giant ragweed, horseweed, Palmer amaranth, and pitted morningglory. Glyphosate plus dicamba applied at a low rate with solution temperature of 31 C provided 14% and 26% greater control of giant ragweed and pitted morningglory, respectively, compared to application at solution temperature of 5 C. At both rates of glyphosate and dicamba formulation, giant ragweed and pitted morningglory control was 15% or greater at solution temperature of 44 C compared to 5 C. Weed control was not affected with premixture of glyphosate and dicamba applied ≤ 24 h after mixing herbicide. When considering solution temperature, glyphosate and dicamba applied at low rate provided 13 and 6% greater control of Palmer amaranth and pitted morningglory, respectively, with solution temperature of 22 C compared to 5 C. Similarly, giant ragweed control was 8% greater with solution temperature of 39 C compared to 5 C. Glyphosate and dicamba applied at high rate provided 8% greater control of giant ragweed at solution temperature of 22 or 39 C compared to 5 C. Therefore, activity of premixed glyphosate and dicamba could be reduced with spray solution at lower temperature; however, the result is dependent on weed species.

El agua es el solvente primario para la aplicación de herbicidas, y factores relacionados a este solvente pueden influenciar el desempeño del herbicida. En un estudio de invernadero, una formulación con una premezcla de glyphosate más dicamba fue mezclada en agua desionizada (DI) a 5, 18, 31, 44, ó 57 C y aplicada inmediatamente. En un estudio acompañante, la formulación de glyphosate más dicamba fue mezclada en agua DI a temperaturas de 5, 22, 39, ó 56 C y aplicada después de que la solución del herbicida fue dejada en su respectiva temperatura por 0, 6, ó 24 h. En ambos estudios, glyphosate más dicamba fue aplicado a 0.275 más 0.137 kg ae ha−1 (dosis baja), y 0.55 más 0.275 kg ha−1 (dosis alta), respectivamente, a Ambrosia trifida, Conyza canadensis, Amaranthus palmeri, e Ipomoea lacunosa. Glyphosate más dicamba aplicados a la dosis baja con una temperatura de solución de 31 C brindaron 14 y 26% más de control de A. trifida e I. lacunosa, respectivamente, al compararse con la aplicación con una temperatura de solución de 5 C. A ambas dosis de la formulación de glyphosate y dicamba, el control de A. trifida e I. lacunosa fue ≥15% con una temperatura de solución de 44 C al compararse con 5 C. El control de malezas no fue afectado con la premezcla de glyphosate y dicamba aplicada ≤ 24 h después de la mezcla del herbicida. Cuando se consideró la temperatura de la solución, glyphosate y dicamba aplicados a la dosis baja brindaron 13 y 6% mayor control de A. palmeri e I. lacunosa, respectivamente, con la temperatura de solución de 22 C al compararse con la de 5 C. Similarmente, el control de A. trifida fue 8% mayor con la temperatura de solución de 39 C comparada con 5 C. Glyphosate y dicamba aplicados a la dosis alta brindaron un control 8% mayor de A. trifida con temperaturas de solución de 22 ó 39 C comparados a 5 C. Así, la actividad de la premezcla de glyphosate y dicamba podría ser influenciada por temperaturas bajas de la solución de aspersión. Sin embargo, el resultado depende de la especie.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Robert Nurse, Agriculture and Agri-Food Canada.

References

Literature Cited

Adkins, SW, Tanpipat, S, Swarbrick, JT, Boersma, M (1998) Influence of environmental factors on glyphosate efficacy when applied to Avenua or Urocholoa panicoides . Weed Res 38:129138 Google Scholar
Beltran, E, Fenet, HJ, Cooper, F, Coste, CM (2000) Kinetics of abiotic hydrolysis of isoxaflutole: influence of pH and temperature in aqueous mineral buffered solutions. J Agric Food Chem 48:43994403 Google Scholar
Buhler, DD, Burnside, OC (1983) Effect of water quality, carrier volume, and acid on glyphosate phytotoxicity. Weed Sci 31:163169 Google Scholar
Dowler, CC (1969) A cucumber bioassay test for the soil residues of certain herbicides. Weed Sci 17:309310 Google Scholar
Ellis, JM, Griffin, JL (2002) Soybean (Glycine max) and cotton (Gossypium hirsutum) response to simulated drift of glyphosate and glufosinate. Weed Technol 16:580586 Google Scholar
Enloe, SF, Westra, P, Nissen, SJ, Miller, SD, Stahlman, PW (1999) Use of quinclorac plus 2,4-D for controlling field bindweed (Convolvulus arvensis) in fallow. Weed Technol 13:731736 Google Scholar
Green, JM, Hale, T (2005) Increasing and decreasing pH to enhance the biological activity of nicosulfuron. Weed Technol 19:468475 Google Scholar
Lin, CH, Lerch, RN, Thurman, ME, Garrett, HE, George, MF (2002) Determination of isoxaflutole (Balance) and its metabolites in water using solid phase extraction followed by high-performance liquid chromatography with ultraviolet or mass spectrometry. J Agric Food Chem 50:58165824 Google Scholar
Nalewaja, JD, Matysiak, R (1991) Salt antagonism of glyphosate. Weed Sci 39:622628 Google Scholar
Nalewaja, JD, Matysiak, R (1992) Species differ in response to adjuvants with glyphosate. Weed Technol 6:561566 Google Scholar
Netherland, MD, Skogerboe, JD, Owens, CS, Madsen, JD (2000) Influence of water temperature on the efficacy of diquat and endothall versus curlyleaf pondweed. J Aquat Plant Manage 38:2532 Google Scholar
Pline, WA, Wu, J, Hatzios, KK (1999) Absorption, translocation, and metabolism of glufosinate in five weed species as influenced by ammonium sulfate and pelargonic acid. Weed Sci 47:636643 Google Scholar
Ramezani, M, Oliver, DP, Kookana, RS, Gurjeet, G, Preston, C (2008) Abiotic degradation (photodegradation and hydrolysis) of imidazolinone herbicides. J Environ Sci Health 43:105112 Google Scholar
Ramsdale, BK, Messersmith, CG, Nalewaja, JD (2003) Spray volume, formulation, ammonium sulfate, and nozzle effects on glyphosate efficacy. Weed Technol 17:589598 Google Scholar
Roskamp, JM, Chahal, GS, Johnson, WG (2013) The effect of cations and ammonium sulfate on the efficacy of dicamba and 2,4-D. Weed Technol 27:7277 Google Scholar
Stahlman, PW, Phillips, WM (1979) Effects of water quality and spray volume on glyphosate phytotoxicity. Weed Sci 27: 3841 Google Scholar
Stewart, CL, Nurse, RE, Cowbrough, M, Sikkema, PH (2009) How long can a herbicide remain in the spray tank without losing efficacy? Crop Prot 28:10861090 Google Scholar