Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T20:43:49.276Z Has data issue: false hasContentIssue false

Influence of Metsulfuron-Containing Herbicides and Application Timings on Tall Fescue Seedhead Production and Forage Yield

Published online by Cambridge University Press:  20 January 2017

Bryan C. Sather
Affiliation:
Division of Plant Sciences, Waters Hall, University of Missouri, Columbia, MO 65211
Craig A. Roberts
Affiliation:
Division of Plant Sciences, Waters Hall, University of Missouri, Columbia, MO 65211
Kevin W. Bradley*
Affiliation:
Division of Plant Sciences, Waters Hall, University of Missouri, Columbia, MO 65211
*
Corresponding author's E-mail: [email protected]

Abstract

Field trials were conducted in 2009 and 2010 to investigate the effects of metsulfuron-containing herbicides on tall fescue growth, seedhead production, yield, and forage nutritive value. Several rates of metsulfuron-containing products and picloram plus 2,4-D were applied to a weed-free tall fescue hay field in the early spring vegetative, late spring boot, and late summer dormancy stages of growth. Compared to the nontreated control, applying metsulfuron-containing herbicides to vegetative tall fescue reduced plant height by 13 to 40% whereas boot-stage applications of these same herbicides reduced height by 28 to 45%. Metsulfuron-containing herbicides reduced seedhead density from 14 to 61% when applied to vegetative tall fescue, and from 53 to 88% when applied at the boot stage. Metsulfuron plus 2,4-D plus dicamba (0.01 + 0.40 + 0.14 kg ai ha−1) was the only metsulfuron-containing treatment applied at the vegetative application timing that did not reduce tall fescue seedheads or yield when compared to the nontreated control. Vegetative-stage applications of metsulfuron-containing herbicides reduced tall fescue yields by 33 to 63%, whereas boot-stage applications reduced yields by 15 to 35%. Picloram plus 2,4-D did not reduce tall fescue height, seedhead density, or yield when applied at either timing. Tall fescue crude protein (CP) concentration was greater in response to the vegetative compared to boot-stage herbicide applications, and vegetative-stage applications of metsulfuron-containing herbicides increased CP concentration of tall fescue by 1.5 to 3.4% compared to the nontreated control. Results from these experiments indicate that spring applications of metsulfuron-containing herbicides can be utilized to reduce tall fescue seedhead production and increase CP content of tall fescue pastures and hay fields, but summer applications of these same herbicide treatments will have only limited effects on yield, nutritive values, or seedhead density of tall fescue harvested in the fall or the spring following treatment.

En 2009 y 2010 se realizaron estudios de campo para investigar los efectos de herbicidas que contienen metsulfuron sobre el crecimiento, producción de inflorescencias, rendimiento y valor nutritivo de Schedonorus phoenix. Varias dosis de picloram más 2,4-D y de productos que contienen metsulfuron se aplicaron a campos de S. phoenix para producción de heno y libres de malezas, en los estados de crecimiento: vegetativo temprano en primavera, producción de tallo floral tarde en la primavera, y latencia tarde en el verano. Al comparar con el testigo sin tratamiento, al aplicar herbicidas que contienen metsulfuron a S. phoenix en estado vegetativo se redujo la altura de las plantas de 13 a 40% mientras que aplicaciones con estos mismos herbicidas durante el estado de tallo floral redujo la altura de 28 a 45%. Herbicidas con metsulfuron redujeron la densidad de inflorescencias entre 14 y 61% cuando se aplicaron en el estado vegetativo y entre 53 y 88% cuando se aplicaron durante la producción del tallo floral. Metsulfuron más 2,4-D más dicamba (0.01 + 0.40 + 0.14 kg ai ha−1) fue el único tratamiento con metsulfuron aplicado en el estado vegetativo que no redujo la producción de inflorescencias o el rendimiento en comparación con el testigo no-tratado. Aplicaciones de herbicidas que contienen metsulfuron, durante el estado vegetativo, redujeron el rendimiento de S. phoenix entre 33 y 63%, mientras que las aplicaciones hechas durante la producción del tallo floral redujeron el rendimiento entre 15 y 35%. Picloram más 2,4-D no redujo la altura, la densidad de inflorescencias o el rendimiento de S. phoenix sin importar el momento de aplicación. La concentración de proteína cruda (CP) de S. phoenix fue mayor en respuesta a las aplicaciones en estado vegetativo que durante la producción del tallo floral. Además, las aplicaciones de herbicidas que contienen metsulfuron durante el estado vegetativo incrementaron la concentración de CP entre 1.5 y 3.4% al compararse con el testigo no-tratado. Los resultados de estos experimentos indican que aplicaciones durante la primavera de herbicidas que contienen metsulfuron pueden ser utilizadas para reducir la producción de inflorescencias e incrementar el contenido de CP de pastos y campos de heno de S. phoenix, pero las aplicaciones durante el verano de estos mismos herbicidas tendrán solamente efectos limitados sobre el rendimiento, valor nutritivo, o densidad de inflorescencias de S. phoenix cosechado en el otoño o la primavera siguiente al tratamiento.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aiken, G. E., Goff, B. M., Witt, W. W., Kagan, I. A., Sleugh, B. B., Burch, P. L., and Schrick, F. N. 2012. Steer and plant responses to chemical suppression of seedhead emergence in toxic endophyte-infected tall fescue. Crop Sci. 52 :960969.Google Scholar
Anonymous. 2009a. DuPont Cimarron Plus Herbicide Label. Wilmington, DE : DuPont. 13 p.Google Scholar
Anonymous. 2009b DuPont Durango DMA Herbicide Label. Wilmington, DE : DuPont. 36 p.Google Scholar
Bacon, C. W. and Siegel, M. R. 1988. Endophyte parasitism of tall fescue. J. Prod. Agric. 1 :4555.Google Scholar
Ball, D. M., Collins, M., Lacefield, G. D., Martin, N. P., Mertens, D. A., Olson, K. E., Putnam, D. H., Undersander, D. J., and Wolf, M. W. 2001. Understanding Forage Quality. Park Ridge, IL : American Farm Bureau Federation Publication. 1-01. 20 p.Google Scholar
Barker, D. J., Sulc, R. M., Bultemeier, T. L., McCormick, J. S., Little, R., Penrose, C. D., and Samples, D. 2005. Contrasting toxic-endophyte contamination between endophyte-free and nontoxic-endophyte tall fescue pastures. Crop Sci. 45 :616625.Google Scholar
Barnes, R. J., Dhanoa, M. S., and Lister, S. J. 1989. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 43 :772777.Google Scholar
Bradley, K. W. and Kendig, J. A. 2004. Weed and Brush Control Guide for Forages, Pastures, and Noncropland. Columbia, MO : University of Missouri Extension MP 581. 32 p.Google Scholar
Bosworth, S. C., Hoveland, C. S., and Buchanan, G. A. 1985. Forage quality of selected cool-season weed species. Weed Sci. 34 :150154.Google Scholar
Bosworth, S. C., Hoveland, C. S., Buchanan, G. A., and Anthony, W. B. 1980. Forage quality of selected warm-season weed species. Agron. J. 72 :10501054.Google Scholar
Bovey, R. W. 1987. Weed control problems, approaches, and opportunities in rangeland. Weed Sci. 3 :5791.Google Scholar
Brown, D. W., Al-Khatib, K., Regehr, D. L., Stahlman, P. W., and Loughlin, T. M. 2004. Safening grain sorghum injury from metsulfuron with growth regulator herbicides. Weed Sci. 52 :319325.Google Scholar
Brown, R. H. and Blaser, R. E. 1965. Relationships between reserve carbohydrate accumulation and growth rate in orchardgrass and tall fescue. Crop Sci. 5 :577582.Google Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences for combined analysis of experiments with two- or three-factor treatment designs. Agron. J. 81 :665672.Google Scholar
Cherney, D.J.R., Cherney, J. H., and Lucey, R. F. 1993. In vitro digestion kinetics and quality of perennial grasses as influenced by forage maturity. J. Dairy Sci. 76 :790797.Google Scholar
Defelice, M. S. and Henning, J. C. 1990. Renovation of endophyte (Acremonium coenophialum)–infected tall fescue (Festuca arundinaceae) pastures with herbicides. Weed Sci. 38 :628633.Google Scholar
DiTomaso, J. M. 2000. Invasive weeds in rangelands: species, impacts and management. Weed Sci. 48 :255265.Google Scholar
Duckworth, J. H. 1998. Spectroscopic quantitative analysis. Pages 93190 in Workman, J. and Springsteen, A. W., eds. Applied Spectroscopy. New York : Academic.Google Scholar
Gadberry, S. and Beck, P. 2005. Growing Cattle on Tall Fescue. Fayetteville, AR : University of Arkansas, Division of Agriculture FSA3101-PD-7-05N. 2 p.Google Scholar
Glenn, A. E., Bacon, C. W., Price, R., and Hanlin, R. T. 1996. Molecular physiology of Acremonium and its taxonomic implications. Mycology 88 :369383.Google Scholar
Glenn, S., Glenn, B., Rieck, C. E., Ely, D. G., and Bush, L. P. 1981. Chemical quality, in vitro cellulose digestion, and yield of tall fescue forage affected by mefluidide. J. Agric. Food Chem. 29 :11611164.Google Scholar
Hancock, D. W. and Andrae, J. G. 2009. Novel Endophyte-Infected Tall Fescue. Athens, GA : University of Georgia, Colleges of Agricultural and Environmental Sciences and Family and Consumer Sciences 861. 8 p.Google Scholar
Hill, N. S., Thompson, F. N., Daive, D. L., and Stuedemann, J. A. 1994. Antibody binding of circulating ergot alkaloids in cattle grazing tall fescue. Am. J. Vet. Res. 55 :419424.Google Scholar
Heise, H. M. and Winzen, R. 2002. Chemometrics in near-infrared spectroscopy. Pages 125162 in Siesler, H. W., Ozaki, Y., Kawata, S., and Heise, H. M. eds. Near-Infrared Spectroscopy: principles, Instruments, Applications. Weinheim, Germany : Wiley VCH.Google Scholar
James, T. K., Rahman, A., and Cornwell, M. J. 1999. Pasture tolerance to the herbicide metsulfuron-methyl. Proc. N. Z. Plant Prot. Conf. 52 :240244.Google Scholar
Moyer, J. L. and Kelley, K. W. 1995. Broadleaf herbicide effects on tall fescue (Festuca arundinacea) seedhead density, forage yield, and quality. Weed Technol. 9 :270276.Google Scholar
Moore, K. J. 2003. Compendium of common forages. Pages 236250 in Barnes, R. F., Nelson, C. J., and Moore, K. J., eds. Forages. 6th ed., Volume I: An Introduction to Grassland Agriculture. Ames, IA : Blackwell.Google Scholar
Paterson, J., Forcherio, C., Larson, B., and Kerley, M. 1995. The effects of fescue toxicosis on beef cattle productivity. J. Anim. Sci. 73 :889898.Google Scholar
Payne, K. K. and Bradley, K. W. 2010. Herbicidal control of tall goldenrod in tall fescue hayfields. Forage and Grazinglands DOI: .Google Scholar
Payne, K. K., Sleugh, B. B., and Bradley, K. W. 2010. Impact of herbicides and application timing on weed control, yield, and nutritive value of tall fescue pastures and hayfields. Weed Technol. 24 :515522.Google Scholar
Reynolds, J. H., Krueger, W. A., Walker, C. J., and Waller, J. C. 1993. Plant growth regulator effects on growth and forage quality of tall fescue. Agron. J. 85 :545548.Google Scholar
Roberts, C.A., Joost, R.E., and Rottinghaus, G.E. 1997. Quantification of ergovaline in tall fescue by near infrared reflectance spectroscopy. Crop Sci. 37 :281284.Google Scholar
Roberts, C. and Andrae, J. 2004. Tall Fescue Toxicosis and Management. Crop. Manag. DOI: .Google Scholar
Rosenbaum, K. K., Bradley, K. W., and Roberts, C. A. 2011. Influence of increasing common ragweed (Ambrosia artemisiifolia) or common cocklebur (Xanthium strumarium) densities on forage nutritive value and yield in tall fescue pastures and hay fields. Weed Technol. 25 :222229.Google Scholar
Rottinghaus, G. E., Garner, G. B., Cornell, C. N., and Ellis, J. L. 1991. HPLC method for quantitating ergovaline in endophyte-infested tall fescue: seasonal variation of ergovaline levels in stems with leaf sheaths, leaf blades, and seed heads. J. Agric. Food Chem. 39 :112115.Google Scholar
Schmidt, S. P., Danilson, D. A., Holliman, J. A., Grimes, H. W., and Webster, W. B. 1986. Fescue fungus suppresses growth and reproduction in replacement beef heifers. Alabama Agric. Exp. Sta. Highlights Agric. Res. 33 :15.Google Scholar
Shenk, J. S. and Westerhaus, M. O. 1991. Population structuring of near infrared spectra and modified partial least squares regression. Crop Sci. 31 :15481555.Google Scholar
Stuedemann, J. A. and Hoveland, C. S. 1988. Fescue endophyte: history and impact on animal agriculture. J. Prod. Agric. 1 :3944.Google Scholar
Watson, V. H. 1976. Weed control and nutritional benefits of Banvel and Weedmaster in warm season grass pastures. Proc. South. Weed Sci. Soc. 29 :142.Google Scholar