Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T02:08:02.945Z Has data issue: false hasContentIssue false

Impact of Imazamox and Imazapyr Carryover on Wheat, Barley, and Oat

Published online by Cambridge University Press:  01 December 2017

Julio A. Scursoni*
Affiliation:
Associate Professor, Plant Production Department, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453 (1417), Buenos Aires, Argentina
Jorgelina C. Montoya
Affiliation:
Weed Researchers, EEA INTA Anguil, Ruta Nacional Nº 5 Km 580 (6326), Anguil, La Pampa, Argentina
Mario R. Vigna
Affiliation:
Weed Researchers, EEA INTA Bordenave, Ruta Provincial 76 Km 36.5 (8187), Bordenave, Provincia de Buenos Aires, Argentina
Ramón Gigón
Affiliation:
Weed Researchers, EEA INTA Barrow Ruta 3 Km 488 (7500), Tres Arroyos, Argentina
Carolina Istilart
Affiliation:
Weed Researchers, EEA INTA Barrow Ruta 3 Km 488 (7500), Tres Arroyos, Argentina
Juan P. Renzi Pugni
Affiliation:
Weed Researcher, EEA INTA Hilario Ascasubi-CERBAS, Ruta 3 Km 794 (8142), Hilario Ascasubi, Argentina
Ricardo López
Affiliation:
Weed Researchers, EEA INTA Bordenave, Ruta Provincial 76 Km 36.5 (8187), Bordenave, Provincia de Buenos Aires, Argentina
Carolina Porfiri
Affiliation:
Weed Researchers, EEA INTA Anguil, Ruta Nacional Nº 5 Km 580 (6326), Anguil, La Pampa, Argentina
*
*Corresponding author’s E-mail: [email protected]

Abstract

Imazapyr and imazamox are frequently applied postemergence to control grass and broadleaf weeds in imidazolinone-resistant sunflower in Argentina. Herbicide carryover to rotational crops represents a disadvantage of these herbicides, particularly in regions with low rainfall during the months prior to rotational crop sowing. Between 2009 and 2012, field and greenhouse studies were conducted on four important sunflower-cropped areas of Argentina. The objective was to quantify the effects of imazapyr alone and imazamox plus imazapyr applied in sunflower crops on the subsequent establishment, growth, and yield of barley, oat, and wheat. In all field experiments, imazapyr alone and imazamox plus imazapyr were applied at recommended rates (80 gha–1 and 66 plus 30 gha–1, respectively), and also, in some experiments, at double the recommended rates. Soil bioassays were also conducted in the greenhouse to study the effect of these herbicides on barley, oat, and wheat seedlings. The mixture of imazamox plus imazapyr was safer for rotational crops than imazapyr applied alone, because of the reduced rate of imazapyr in the mixture treatments. Barley was more sensitive to imidazolinones, particularly imazapyr, than the other winter cereals. Imazapyr at double rate (160 gha–1) reduced barley yield by 45% when seeds were sown 165 d after herbicide application and with 240 mm rainfall after herbicide application.

Type
Weed Management-Major Crops
Copyright
© Weed Science Society of America, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this Paper: Andrew Kniss, University of Wyoming.

References

Literature Cited

Aichele, TM, Penner, D (2005) Adsorption, desorption, and degradation of imidazolinones in Soil. Weed Technol 19:154159 Google Scholar
Alister, C, Kogan, M (2005) Efficacy of imidazolinone herbicides applied to imidazolinone-resistant maize and their carryover effect on rotational crops. Crop Prot 24:375379 Google Scholar
ASAGIR (2014) http://www.asagir.org.ar. Accessed October 31, 2017Google Scholar
Ball, DA, Yenish, JP, Alby, T (2003) Effect of imazamox soil persistence on dryland rotational crops. Weed Technol 17:161165 CrossRefGoogle Scholar
Bedmar, F, Leaden, MI, Eyherabide, JJ (1983) Efectos de la competencia de las malezas con el girasol (Helianthus annuus L.). Malezas 4:5161 Google Scholar
Bhalla, P, Hackett, NM, Hart, RG, Lignowski, EM (1991) Imazaquin herbicide. Pages 239246 in Shaner DL, O’Connor Sl, ed. The Imidazolinone Herbicides. Boca Raton, FL: CRC Press Google Scholar
Cantagallo, JE, Chimenti, CA, Hall, AJ (1997) Number of seeds per unit area in sunflower correlates well with a photothermal quotient. Crop Sci 37:17801786 Google Scholar
Cantwell, JR, Liebl, RA, Slife, FW (1989) Biodegradation characteristics of imazaquin and imazethapyr. Weed Sci 37:815819 CrossRefGoogle Scholar
Durgan, BR, Dexter, AG, Miller, SD (1990) Kochia (Kochia scoparia) interference in sunflower (Helianthus annuus L.). Weed Technol 4:5256 Google Scholar
Fedoruk, LK, Shirtliffe, SJ (2011) Herbicide choice and timing for weed control in imidazolinone-resistant lentil. Weed Technol 25:620625 Google Scholar
Gianelli, V, Bedmar, F, Monterubbianesi, MG (2011) Persistencia del herbicida imazapir en el suelo y efectos fitotóxicos sobre cultivos de invierno y de verano. Revista de Investigaciones Agropecuarias 37:1825 Google Scholar
Istilart, CM (2002) Herbicidas en pre siembra (barbecho corto) y en preemergencia en girasol en siembra directa. Buenos Aires, Argentina: INTAGoogle Scholar
Istilart, CM (2005) Residualidad de imidazolinonas sobre cereales de invierno. Actas Tercer Congreso Argentino de Girasol, ASAGIR. Buenos Aires, Argentina: INTAGoogle Scholar
Knezevic, SZ, Elezovic, I, Datta, A, Vrbnicanin, S, Glamoclija, D, Simic, M, Malidza, G (2013) Delay in the critical time for weed removal in imidazolinone-resistant sunflower (Helianthus annuus) caused by application of a pre-emergence herbicide. Int J Pest Manage 59:229235 Google Scholar
Knezevic, SZ, Evans, SP, Blankenship, EE, Van Acker, RC, Lindquist, JL (2002) Critical period for weed control: the concept and data analysis. Weed Sci 50:773786 Google Scholar
Kraemer, AF, Marchesan, E, Avila, LA, Machado, SLO, Grohs, M (2009) Environmental fate of imidazolinone herbicides. A review. Planta Daninha 27:629639 Google Scholar
Lewis, DW, Gulden, RH (2014) Effect of kochia (Kochia scoparia) interference on sunflower (Helianthus annuus) yield. Weed Sci 62:158165 Google Scholar
Loux, M, Reese, K (1993) Effect of soil type and pH on persistence and carryover of imidazolinone herbicides. Weed Technol 7:452458 Google Scholar
Mangels, G (1991) Behavior of the imidazolinone herbicides in soil: a review of the literature. Pages 191209 in Shaner DL, O’Connor SL, eds. The Imidazolinone Herbicides. Boca Raton, FL: CRC Press Google Scholar
Ministerio de Agricultura de Argentina (2013) http://www.agroindustria.gob.ar/sitio/areas/estimaciones/estimaciones/informes. Accessed October 31, 2017Google Scholar
Montoya, JC (2016) Malezas en el cultivo de girasol: estrategias de manejo y control. Boletin de Divulgación Técnica 114. La Pampa, Argentina: Ediciones INTA.Google Scholar
Montoya, JC, Porfiri, C, Romano, N, Rodríguez, N (2008) Manejo de malezas en el cultivo de girasol. Pages 49–64 in E.E.A. INTA Anguil Ing. Agr. Guillermo Covas. http://inta.gob.ar/documentos/el-cultivo-de-girasol-en-la-region-semiarida-pampeana/. Accessed October 31, 2017Google Scholar
[PPDB] Pesticides Properties DataBase. http://sitem.herts.ac.uk/aeru/ppdb/en. Accessed December 15, 2016 Google Scholar
Shaner, DL, Hornford, R (2005) Soil interactions of imidazolinone herbicides used in Canada. Pages 2330 in Van Acker RC, ed. Soil Residual Herbicides: Science and Management. Topics in Canadian Weed Science, Vol 3. Sainte-Anne-de Bellevue, Quebec: Canadian Weed Science Society Google Scholar
Tu, M, Hurd, C, Randall, JR (2004) Weed Control Methods Handbook: Tools and Techniques for Use in Natural Areas. New York, NY: The Nature Conservancy Google Scholar
Zadoks, JC, Chang, TT, Konzak, CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415421 CrossRefGoogle Scholar