Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T02:06:08.341Z Has data issue: false hasContentIssue false

Growth Analysis of Cotton in Competition with Velvetleaf (Abutilon theophrasti)

Published online by Cambridge University Press:  20 January 2017

Xiaoyan Ma*
Affiliation:
State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China 455000
Jinyan Yang
Affiliation:
State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China 455000
Hanwen Wu
Affiliation:
Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia
Weili Jiang
Affiliation:
State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China 455000
Yajie Ma
Affiliation:
State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China 455000
Yan Ma
Affiliation:
State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China 455000
*
Corresponding author's E-mail: [email protected].

Abstract

Field experiments were conducted in 2013 and 2014 to determine the influence of velvetleaf densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m−1 of row on cotton growth and yield. The relationship between velvetleaf density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.44 to 0.48 velvetleaf m−1 of row would result in a seed cotton yield loss of 50%. Velvetleaf remained taller and thicker than cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing velvetleaf density. Moreover, velvetleaf interference delayed cotton maturity, especially at velvetleaf densities of 1 to 8 plants m−1 of row, and cotton boll number and weight, seed numbers per boll, and lint percentage were also reduced. Fiber quality was not influenced by weed density when analyzed over 2 yr; however, fiber length uniformity and micronaire were adversely affected in 2014. Velvetleaf intraspecific competition resulted in density-dependent effects on weed biomass, ranging from 97 to 204 g plant−1 dry weight. Velvetleaf seed production per plant or per square meter was indicated by a logarithmic response. At a density of 1 plant m−1 of cotton row, velvetleaf produced approximately 20,000 seeds m−2. The adverse impact of velvetleaf on cotton growth and development identified in this study have indicated the need for effective management of this species when the weed density is greater than 0.25 to 0.5 plant m−1 of row and before the weed seed maturity.

Experimentos de campo fueron realizados en 2013 y 2014 para determinar la influencia de densidades de Abutilon theophrasti de 0, 0.125, 0.25, 0.5, 1, 2, 4, y 8 plantas m−1 de hilera en el crecimiento y el rendimiento del algodón. La relación entre la densidad de A. theophrasti y el rendimiento de semilla de algodón fue descrita con un modelo de regresión hiperbólico decreciente, el cual estimó que una densidad de 0.44 a 0.48 plantas de A. theophrasti m−1 de hilera resultaría en una pérdida del rendimiento de semilla de algodón de 50%. A. theophrasti se mantuvo con una mayor altura y grosor que el algodón a lo largo de toda la temporada de crecimiento. Tanto la altura como el diámetro de tallo del algodón se redujeron con el aumento en la densidad de A. theophrasti. Además, la interferencia de A. theophrasti retrasó la madurez del algodón, especialmente con densidades de A. theophrasti de 1 a 8 plantas m−1 de hilera. Además, el número y peso de los frutos del algodón, el número de semillas por fruto, y el porcentaje de fibra también fueron reducidos. La calidad de la fibra no fue influenciada por la densidad de la maleza cuando se analizaron los resultados promediando dos años. Sin embargo, la uniformidad del largo de la fibra y el grosor de la fibra fueron adversamente afectados en 2014. La competencia intra-específica de A. theophrasti afectó la biomasa de la maleza en forma dependiente de la densidad variando desde 97 a 204 g planta−1 de peso seco. La producción de semilla de A. theophrasti por planta o por metro cuadrado fue descrita mediante una respuesta logarítmica. A una densidad de 1 planta m−1 de hilera de algodón, A. theophrasti produjo aproximadamente 20,000 semillas m−2. El impacto adverso de A. theophrasti sobre el crecimiento y desarrollo del algodón identificado en este estudio ha indicado la necesidad de un manejo efectivo de esta especie cuando la densidad de la maleza es mayor de 0.25 a 0.5 plantas m−1 de hilera y esto se debe hacer antes de la madurez de la semilla de la maleza.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Jason Bond, Mississippi State University

References

Literature Cited

Akey, AC, Jurik, TW, Dekker, J (1990) Competition for light between velvetleaf (Abutilon theophrasti) and soybean (Glycine max). Weed Res 30:403411 Google Scholar
Akey, AC, Jurik, TW, Dekker, J (1991) A replacement series evaluation of competition between velvetleaf (Abutilon theophrasti) and soybean (Glycine max). Weed Res 31:6372 Google Scholar
Amini, R, Alizadeh, H, Yousefi, A (2014) Interference between red kidneybean (Phaseolus vulgaris L.) cultivars and redroot pigweed (Amaranthus retroflexus L.). Eur J Agron 60:1321 Google Scholar
Arle, HF, Hamilton, KC (1973) Effect of annual weeds on furrow irrigated cotton. Weed Sci 22:496499 Google Scholar
Askew, SD, Wilcut, JW (2002a) Ladysthumb interference and seed production in cotton. Weed Sci 50:326332 Google Scholar
Askew, SD, Wilcut, JW (2002b) Pennsylvania smartweed interference and achene production in cotton. Weed Sci 50:350356 Google Scholar
Askew, SD, Wilcut, JW (2002c) Pale smartweed interference and achene production in cotton. Weed Sci 50:357363 Google Scholar
Bagavathiannan, MV, Norsworthy, JK (2012) Late-season seed production in arable weed communities: management implications. Weed Sci 60:325334 Google Scholar
Bailey, WA, Askew, SD, Dorai-Raj, S, Wilcut, JW (2003) Velvetleaf (Abutilon theophrasti) interference and seed production dynamics in cotton. Weed Sci 51:94101 Google Scholar
Barnett, KA, Steckel, LE (2013) Giant ragweed (Ambrosia trifida) competition in cotton. Weed Sci 61:543548 Google Scholar
Begonia, GB, Aldrich, RJ, Salisbury, CD (1991) Soybean yield and yield components as influenced by canopy heights and duration of competition of velvetleaf (Abutilon theophrasti Medik.). Weed Res 31:117124 Google Scholar
Benvenuti, S, Macchia, M, Stefani, A (1994) Effects of shade on reproduction and some morphological characteristics of Abutilon theophrasti M., Datura stramonium L. and Sorghum halepense L. Pers. Weed Res 34:283288 Google Scholar
Black, CC, Chen, TM, Brown, RH (1969) Biochemical basis for plant competition. Weed Sci 17:338344 Google Scholar
Bouchagier, P, Efthimiadou, A, Katsileros, A, Bilalis, D, Efthimiadis, P (2008) Adverse effect of bermudagrass on physiological and growth components of cotton. J Agron 7:4955 Google Scholar
Buchanan, GA, Burns, ER (1970) Influence of weed competition on cotton. Weed Sci 18:149154 Google Scholar
Buchanan, GA, Burns, ER (1971a) Weed competition in cotton, I: sicklepod and tall morningglory. Weed Sci 19:576580 Google Scholar
Buchanan, GA, Burns, ER (1971b) Weed competition in cotton, II: cocklebur and redroot pigweed. Weed Sci 19:580582 Google Scholar
Castner, EP, Murray, DS, Hackett, NM, Verhalen, LM (1989) Interference of hogpotato (Hoffmanseggia glauca) with cotton (Gossypium hirsutum). Weed Sci 37:688694 Google Scholar
Chandler, JM (1977) Competition of spurred anoda, velvetleaf, prickly sida, and Venice mallow in cotton. Weed Sci 25:151158 Google Scholar
Christidis, BG, Harrison, GJ, eds (1955) Cotton Growing Problems. New York: McGraw-Hill. Pp 435462 Google Scholar
Cortés, JA, Mendiola, MA, Castejón, M (2010) Competition of velvetleaf (Abutilon theophrasti M.) weed with cotton (Gossypium hirsutum L.) economic damage threshold. Span J Agric Res 8:391399 Google Scholar
Cousens, R (1985) A simple model relating yield loss to weed density. Ann Appl Biol 107:239252 Google Scholar
Dekker, J, Meggitt, WF (1983) Interference between velvetleaf (Abutilon theophrasti Medic.) and soybean (Glycine max (L.) Merr.) I. growth. Weed Res 23:91101 Google Scholar
Dempsey, JM, ed (1975) Fiber crops. Chapter 8 in China Jute. Gainesville, FL: University of Florida Press. Pp 397413 Google Scholar
Donald, CM (1958) The interaction of competition for light and for nutrients. Aust J Agri Res 9:421435 Google Scholar
Dorado, J, Fernández-Quintanilla, C, Grundy, AC (2009) Germination patterns in naturally chilled and non-chilled seeds of fierce thornapple (Datura ferox) and velvetleaf (Abutilon theophrasti). Weed Sci 57:155162 Google Scholar
Heap, I (2014) International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/summary/home.aspx. Accessed December 10, 2014Google Scholar
James, TK, Cooper, JM (2012) Control of the recently-introduced weed butterprint (Abutilon theophrasti) in maize. N Z Plant Prot 65:6468 Google Scholar
Kirby, RH, ed (1963) Vegetable Fibres: Botany, Cultivation, and Utilization. New York: Interscience. 46 pGoogle Scholar
Li, HL (1970) The origin of cultivated plants in Southeast Asia. Econ Bot 24:319 Google Scholar
Li, YH, ed (1998) Weeds of China. Beijing, China: China Agricultural Press. 1617 pGoogle Scholar
Lindquist, JL, Mortensen, DA, Clay, SA, Schmenk, R, Kells, JJ, Howatt, K, Westra, P (1996) Stability of corn (Zea mays)—velvetleaf (Abutilon theophrasti) interference relationships. Weed Sci 44:309313 Google Scholar
Lueschen, WE, Andersen, RN (1980) Longevity of velvetleaf (Abutilon theophrasti M.) seeds. Weed Sci 34:617622 Google Scholar
Ma, XY, Wu, HW, Jiang, WL, Ma, YJ, Ma, Y (2015) Interference between redroot pigweed (Amaranthus retroflexus L.) and cotton (Gossypium hirsutum L.): growth analysis. PloS One 10:e0130475.Google Scholar
McDonald, AJ, Riha, SJ, Mohler, CL (2004) Mining the record: historical evidence for climatic influences on maize—Abutilon theophrasti competition. Weed Res 44:439445 Google Scholar
Mercer, KL, Murray, DS, Verhalen, LM (1987) Interference of unicorn-plant (Proboscidea louisianica) with cotton (Gossypium hirsutum). Weed Sci 35:807812 Google Scholar
Morgan, GM, Baumann, PA, Chandler, JM (2001) Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol 15:408412 Google Scholar
Muenscher, WC, ed (1955) Weeds. New York: MacMillan. 336 pGoogle Scholar
Nurse, RE, DiTommaso, A (2005) Corn competition alters the germinability of velvetleaf (Abutilon theophrasti) seeds. Weed Sci 53:479488 Google Scholar
Patterson, DT (1982) Effects of shading and temperature on showy crotalaria (Crotalaria spectabilis). Weed Sci 30:692697 Google Scholar
Pavlović, D, Vrbničanin, S, Božic', D, Simončič, A (2007) The study of methods for determination of metabolism based resistance of Abutilon theophrasti medic. to atrazine. J Cent Eur Agric 8:435442 Google Scholar
Peng, J, Ma, Y, Li, X, Ma, X, Xi, J, Ma, Y, Li, X (2012) Competition of an alien invasive weed Flaveria bidentis with cotton. Cotton Sci 24:272278 [In Chinese]Google Scholar
Poonguzhalan, P, Ayyadurai, R, Gokila, J (2013) Effect of crop–weed competition in cotton (Gossypium hirsutum L.)—a review. Agric Rev 34:157161 Google Scholar
Rogers, JB, Murray, DS, Verhalen, LM, Claypool, PL (1996) Ivyleaf morningglory (Ipomoea hederacea) interference with cotton (Gossypium hirsutum). Weed Technol 10:107114 Google Scholar
Rowland, MW, Murray, DS, Verhalen, LM (1999) Full season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci 47:305309 Google Scholar
Rushing, DW, Murray, DS, Verhalen, LM (1985) Weed interference with cotton (Gossypium hirsutum), I: buffalobur (Solanum rostratum). Weed Sci 33:810814 Google Scholar
Salisbury, CD, Chandler, JM (1993) Interaction of cotton (Gossypium hirsutum) and velvetleaf (Abutilon theophrasti) plants for water is affected by their interaction for light. Weed Sci 41:6974 Google Scholar
Scott, GH, Askew, SD, Wilcut, JW, Brownie, C (2000) Datura stramonium interference and seed rain in Gossypium hirsutum . Weed Sci 48:613617 Google Scholar
Smith, DT, Baker, RV, Steele, GL (2000) Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol 14:122126 Google Scholar
Smith, BS, Murray, DS, Weeks, DL (1990) Velvetleaf (Abutilon theophrasti M.) interference with cotton (Gossypium hirsutum). Weed Technol 4:799803 Google Scholar
Snipes, CE, Buchanan, GA, Street, JE, Mcguire, JA (1982) Competition of common cocklebur (Xanthium pensylvanicum) with cotton (Gossypium hirsutum). Weed Sci 30:553556 Google Scholar
Spencer, NR (1984) Velvetleaf, Abutilon theophrasti (Malvaceae), history and economic impact in the United States. Econ Bot 38:407416 Google Scholar
Tingle, CH, Steele, GL (2003) Competition and control of smellmelon (Cucumis melo var. dudaim Naud.) in cotton. Weed Sci 51:586591 Google Scholar
Walsh, M (2014) The importance of harvest weed seed control in weed management. Int Pest Control 56:268270 Google Scholar
Winter, DM (1960) The development of the seed of Abutilon theophrasti, I: ovule and embryo. Am J Bot 47:813 Google Scholar
Wood, ML, Murray, DS, Banks, JC, Verhalen, LM, Westerman, RB, Anderson, KB (2002) Johnsongrass (Sorghum halepense) density effects on cotton (Gossypium hirsutum) harvest and economic value. Weed Technol 16:495501 Google Scholar
Zanin, G, Sattin, M (1988) Threshold level and seed production of velvetleaf (Abutilon theophrasti Medicus) in maize. Weed Res 28:347352 Google Scholar
Ziska, L (2012) Observed changes in soyabean growth and seed yield from Abutilon theophrasti competition as a function of carbon dioxide concentration. Weed Res 53:140145 Google Scholar